Abstract:
A film forming composition comprises a resin, a plurality of nanoparticles, a surface active material and a polymeric dispersant. The film forming composition is substantially transparent and is adapted to be combined with a substrate to enhance abrasion resistance. The film forming composition may be used with wood objects including furniture, doors, floors, for architectural surfaces, for automotive articles and finishes, for metal coatings and coil coatings, for plastic articles, and for wipe-on protective treatments.
Abstract:
The present invention relates to a process for imaging , preferably deep ultraviolet (uv), photoresists with a topcoat using, preferably deep uv, immersion lithography. The invention further relates to a barrier coating composition comprising a polymer with at least one ionizable group having a pKa ranging from about -9 to about 11. The invention also relates to a process for imaging a photoresist with a (top) barrier coat to prevent contamination of the photoresist from environmental contaminants.
Abstract:
Photoresist compositions that demonstrate superior photolithographic performance and hardened resist films that show superior resistance to solvents, have excellent resistance to under plating during the electrodeposition of metals, and show excellent resist stripping characteristics. These photoresist compositions according to the invention are well-suited as for applications in the manufacture of MEMS and micromachine devices. These photoresist compositions according to the invention comprise one or more epoxide-substituted, polycarboxylic acid Resin Component (A), one or more photoacid generator compounds (B), and one or more solvent (C).
Abstract:
Novel anti-reflective coatings comprising small molecules (e.g., less than about 5,000 g/mole) in lieu of high molecular weight polymers and methods of using those coatings are provided. In one embodiment, aromatic carboxylic acids are used as the chromophores, and the resulting compounds are blended with a crosslinking agent and an acid. Anti-reflective coating films prepared according to the invention exhibit improved properties compared to high molecular weight polymeric anti-reflective coating films. The small molecule anti-reflective coatings have high etch rates and good via fill properties. Photolithographic processes carried out with the inventive material result in freestanding, 110-nm profiles.
Abstract:
The invention provides an imaging element comprising a support having thereon, in order, at least one imaging layer, at least one interlayer containing a lubricant which provides scratch-resistance and at least one outermost layer containing a different lubricant which provides abrasion-resistance and a method of processing the element. The element has increased durability, especially with regard to scratch- and abrasion- (especially photoabrasion-) resistance, whilst retaining performance and ease of manufacture. Preferably the element is for use in the manufacture of printed circuit boards or the production of printing plates, wherein abrasion and scratches are particularly acute.
Abstract:
The present invention relates to an imaging element comprising a support, an imaging layer, and at least one layer comprising a clay nanocomposite wherein said nanocomposite comprises a splayant and at least one natural clay particle having an aspect ratio of from 20:1 to 500:1.
Abstract:
A polymerizable adamantane derivative represented by the following formula (1): (1) wherein R represents fluorine or fluoroalkyl and the adamantane ring may be substituted. Examples of the fluoroalkyl include trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,2-trifluoro-1-(trifluoromethyl)ethyl, and heptafluoropropyl.
Abstract:
This invention relates to photochromic filaments composed of the lithium salt of a conjugated, polymerizable polyacetylene having a carboxylic acid or carboxylate terminal group wherein the length to width ratio of said filaments is between about 5000:1 and about 5:1 and the average length of the filament is up to about 5cm. The invention also pertains to the use of said salts in maximized radiation sensitivity for imaging, radiation dose measurement or mapping and detection of radiation fields.
Abstract:
A composition containing a polymer, a crosslinker and a photo-activatable catalyst is placed on a substrate. The composition is exposed to a predetermined pattern of light, leaving an unexposed region. The light causes the polymer to become crosslinked by hydrosilylation. A solvent is used to remove the unexposed composition from the substrate, leaving the exposed pattern to become a sorbent polymer film that will absorb a predetermined chemical species when exposed to such chemical species.
Abstract:
The present invention provides a method for producing direct-imaged flexographic printing elements such that both the front and back exposure times are economically efficient for the manufacturer. In one embodiment, the method comprises providing at least one solid photocurable element. The solid photocurable element comprises a solid photocurable material comprising an oxygen scavenger, a support layer having an actinic radiation absorbing compound integrated uniformly throughout such that is absorbs at least some actinic radiation during exposure, and a photoablative mask layer. The methods of the invention involve creating a floor in the solid photocurable material by back exposure through the support layer having the actinic radiation absorbing compound, transferring a negative image directly onto the solid photocurable material by photoablating the photoablatable mask layer, followed by front exposure effective to cure the solid photocurable material.