Abstract:
A two step method for preparing a filler composition, the filler composition useful to prepare a nanocomposite polymer. The first step is to disperse a water dispersible filler material in a liquid comprising water to form a dispersion. The second step is to replace at least a portion of the water of the liquid with an organic solvent to form the filler composition, the water concentration of the liquid of the filler composition being less than six percent by weight, the average size of at least one dimension of the filler material being less than two hundred nanometers upon examination by transmission electron microscopy of a representative freeze dried sample of the dispersion of the first step. A nanocomposite polymer can be prepared by mixing the above-made filler composition with one or more polymer, polymer component, monomer or prepolymer to produce a polymer containing a filler having an average size of at least one dimension of the filler of less than two hundred nanometers upon examination by transmission electron microscopy of a representative sample of the polymer. In addition, an epoxy resin composition useful for making a cured epoxy nanocomposite polymer, the epoxy resin composition made by a two step process. The first step is to mix an epoxy resin with the filler composition to form an epoxy resin mixture. The second step is to remove organic solvent from the epoxy resin mixture to form the epoxy resin composition. And, a nanocomposite polymer, made by the step of mixing the filler composition with one or more polymer, polymer component, monomer or prepolymer to produce a polymer containing a filler having an average size of at least one dimension of the filler of less than two hundred nanometers upon examination by transmission electron microscopy of a representative sample of the polymer.
Abstract:
Battery pack structural assembly (2) comprising a plurality of transverse support devices (5) between which one or more groups of stacked battery cells (3) may be mounted and electrically interconnected, each transverse support device comprising a support frame (6) and a plurality of battery connection plates (16) mounted on the support frame, the battery connection plates having a conductive surface facing an outer side of the transverse support, the support frame comprising chambers (8) formed therein interconnected fluidically to form at least one channel for circulation of cooling fluid through the transverse support device, the chambers being covered by the battery connection plates.
Abstract:
The teachings herein relate to new compositions for thermal interface materials that provide improved thermal conductivity without requiring filler materials that are expensive or abrasive. The improved thermal conductivity is achieved using a combination of increased filler loading, selection of a filler having a broad particle size distribution, and selection of filler that is non-abrasive. The thermal interface material preferably has a specific gravity of about 4.0 or less, about 3.0 or less, about 2.5 or less, or about 2.4 or less. The thermal interface material may be a two-part composition. In order to achieve maximum thermal conductivity, each part preferably includes a liquid matrix material and dispersed filler. Upon mixing, the first and second parts may react to increase this viscosity (e.g., by polymerizing and/or cross-linking). The first part preferably includes a carbamate-containing compound that reacts with a carbamate-reactive compound, which is preferably in the second component. The first part preferably is substantially or entirely free of isocyanate containing compounds, as these compounds may reduce the shelf life stability of the composition. The carbamate-reactive compound preferably is a polyamine, including two or more spaced apart amine groups. The first part, the second part, or both, preferably includes a catalyst for accelerating the reaction between the carbamate-containing compound and the carbamate-reactive compound.
Abstract:
Disclosed are compositions comprising: a) one or more isocyanate functional components; b) one or more alkoxyalkyl benzoates; and c) one or more catalysts for the reaction of isocyanate moieties with hydroxyl groups. Disclosed is a method of bonding two or more substrates together comprising contacting two or more substrates together with a composition disclosed herein disposed along at least a portion of the area wherein the substrates are in contact. At least one of the substrates may be window glass. One of the other substrates may be a building or a vehicle.
Abstract:
An epoxy resin composition including an epoxy functionalized resin, a hardener, and an internal mold release agent, wherein the epoxy functionalized resin has a monohydrolyzed resin content of at least about 0.1 wt %.
Abstract:
A new adhesive composition containing ground rubber and having unique properties in automotive related applications. The method of making such new adhesive composition.
Abstract:
A vulcanized rubber is formed by a method comprising blending a halogenated unsaturated polymer into a rubber comprised of cis 1-4 polyisoprene to form a vulcanizable polymer blend, adding a vulcanization material to the vulcanizable polymer blend, and vulcanizing the vulcanizable polymer blend to form a homogeneous vulcanized rubber. The method may be used to form a vulcanized rubber comprised of polyisoprene uniformly crosslinked with a halogenated unsaturated polymer that is a reaction product of (i) an unsaturated polymer miscible with polyisoprene and having conjugated dienes that undergo a Diels Alder reaction and (ii) a polyhalogenated cyclopentadiene.
Abstract:
A two-component curable epoxy resin system having an epoxy component containing a unique combination of two or more epoxy resins with at least one of the epoxy resins being an epoxy novolac type resin. The composite made from such resin system exhibits high glass transition temperature.