Abstract:
A fire resistant optical communication cable is provided. The fire-resistant optical communication cable includes an extruded cable body including an inner surface defining a passage in the cable body and an outer surface. The fire-resistant optical communication cable includes a plurality of elongate optical transmission elements located within the passage of the cable body. The fire-resistant optical communication cable includes a layer of intumescent particles embedded in the material of the cable body forming an intumescent layer within the cable body. The cable may include one or more elements having flame resistant coatings that, upon exposure to heat, form a ceramic layer increasing the combustion time of the coated element.
Abstract:
A system and method for passing a fiber cable through a fiber connector is presented. A fiber connector includes an outer body and a series of flutes inside the outer body. The outer body forms an interior chamber that has a first opening and a second opening. The first opening allows a coolant to flow into the first opening and the first and second openings allow the fiber cable to pass through the first opening and the second opening and through the fiber connector. A series of flutes are attached to an inner surface of the outer body and extend into the interior chamber. The flutes are spaced apart from each other and extend from the inner surface toward the fiber cable but do not touch the fiber cable when no liquid is flowing in the fiber connector.
Abstract:
Halogen-free flame retardant compositions comprising thermoplastic vulcanizates, which exhibit desired flame retardance and low-smoke emission. These flame retardant compositions comprise a) one or more thermoplastic vulcanizates, and b) from at or about 18 to at or about 50 weight percent, the weight percentage being based on the total weight of the flame retardant composition, of a flame retardant mixture comprising: b1) at least one flame retardant comprising a phosphinate, diphosphinate and/or polymers thereof, b2) a phosphorous-containing amino composition, and b3) a zeolite.
Abstract:
A conductor mounting configuration includes a conductor having a signal carrying portion, and insulative portion radially outwardly disposed of the signal carrying portion and a jacket radially outwardly disposed of the insulative portion; an intermediary material having a thickness selected to accommodate a heat based fusion to the jacket while requiring a heat load of less than that associated with damage to the conductor; and a heat fusion affixing the conductor to the intermediate material and method.
Abstract:
A fiber optic cable comprises a cable core comprising at least one optical fiber and one of at least one electrical conductor and at least one strength member disposed adjacent the at least one optical fiber, at least one polymeric inner layer enclosing the cable core, and at least one polymeric outer layer enclosing the cable core and the inner layer to form the fiber optic cable, the outer layer operable to maintain integrity of the cable within a predetermined temperature range.
Abstract:
Ein optisches Kabel (1) mit einem geringen Platzbedarf und einer von der Biegerichtung unabhängigen hohen Flexibilität umfasst einen Kabelmantel (11) und genau eine Ader (10), die von dem Kabelmantel (11) umgeben ist. Die genau eine Ader (10) enthält mehrere Lichtwellenleiter (100). Das optische Kabel (1) und die Ader (10) weisen jeweils einen runden Querschnitt auf. Das optische Kabel ist dazu ausgebildet, eine optische Verbindung zwischen weiteren Lichtwellenleitern herzustellen. Weiterhin umfasst eine Anordnung zur Verbindung einer Vielzahl von Lichtwellenleitern ein Feld von Anschlüssen. Die Enden des optischen Kabels (1) sind an jeweils zwei der Anschlüsse anschließbar, so dass die Verbindungen zwischen einer Vielzahl von weiteren Lichtwellenleitern konfigurierbar sind. Ein Verfahren zur Herstellung des optischen Kabels (1) beinhaltet die Konfektionierung eines Mehrfaserkabels für die Verwendung in einem Rangierfeld.