Abstract:
Provided are inorganic fibers containing calcium and alumina as the major fiber components. The inorganic fibers containing calcia and alumina are provided with a coating of a phosphorous containing compound on at least a portion of the fiber surfaces. Also provided are methods of preparing the coated and non-coated inorganic fibers and of thermally insulating articles using thermal insulation comprising the inorganic fibers.
Abstract:
Disclosed are a method of coating the surface of metal oxide with ultrafine metal oxide particles and a coating produced thereby. Specifically, the method of coating the surface of metal oxide with ultrafine metal oxide particles, according to this invention, includes i) bringing metal (Ml) oxide into contact with an aqueous solution of a metal (M2) salt to be applied thereon, and ii) continuously mixing and reacting the contacted metal oxide with water at a reaction temperature of 200~700°C under pressure of 180~550 bar.
Abstract:
Disclosed is a polymer material comprised of at least one non-cyclic ceramic- forming polymer. The porosity and elemental composition of the resulting ceramic can be varied by inclusion of polymers with particular ratios of carbon, silicon, oxygen, and hydrogen and by manipulation of the conditions under which the polymer material is converted to a ceramic. The resulting ceramic may be useful in fiber-reinforced ceramic matrix composites (CMCs), semiconductor fabrication, fiber coatings, friction materials, and fire resistant coatings. A first aspect of the invention provides a compound of formula I wherein x is between about 0.75 and about 0.9, y is between about 0.05 and about 0.15, and z is between about 0.05 and about 0.20.
Abstract:
A ceramic having at least about 90% by weight magnesium aluminate and having a bulk scattering and absorption loss of less than about 1/cm at any wavelength in a range of about 0.23 to about 5.3 microns or 0.2/cm at any wavelength in a range of about 0.27 to about 4.5 microns. A method of making a ceramic by providing a plurality of particles having a magnesium aluminate core and a fluoride salt coating; heating the particles in an oxidizing atmosphere to a temperature in the range of about 400°C to about 75O°C; and sintering the particles to for a solid ceramic.
Abstract:
A method of manufacturing polycrystalline abrasive elements consisting of micron, sub-micron or nano-sized ultrahard abrasives dispersed in micron, sub-micron or nano-sized matrix materials. A plurality of ultrahard abrasive particles having vitreophilic surfaces are coated with a matrix precursor material and then treated to render them suitable for sintering. The matrix precursor material can be converted to an oxide, nitride, carbide, oxynitride, oxycarbide, or carbonitride, or an elemental form thereof. The coated ultrahard abrasive particles are consolidated and sintered at a pressure and temperature at which they are crystallographically or thermodynamically stable.
Abstract:
A method of coating ultrahard abrasive particles having vitreophilic surfaces, or treated to render their surfaces vitreophilic, are coated with an oxide precursor material, which is then heat treated to dry and purify the coats. The heat treated, coated ultrahard abrasive particles are further treated to convert the coats to an oxide, nitride, carbide, oxynitride, oxycarbide, or carbonitride thereof, or an elemental form thereof, or a glass.
Abstract:
The invention provides dielectric (e.g., barium titanate-based) particles having passivated surfaces. The surfaces may be passivated, for example, using methods that limit the dissolution of divalent metals (e.g., barium) from the particle surfaces in subsequent processing steps. In some methods, the surfaces are passivated by washing the particles to form a divalent metal-depleted surface region. In other methods, the particles may be coated with a divalent metal insoluble compound or a divalent metal free compound. Advantageously, the surface passivated particles may be uniformly dispersed to form dispersions that are stable for long periods of time and may be further processed to form articles having particles uniformly dispersed therein. The particles are particularly suitable in the formation of polymer/dielectric composites that may be used in embedded capacitor applications.
Abstract:
A carbon material includes carbon particles having a graphite structure, the particles having a carbonaceous material deposited on at least a portion of the surface thereof, and fibrous carbon. In the carbon material, the carbonaceous material is obtained by subjecting a composition containing a polymer to heat treatment. The fibrous carbon is preferably deposited to the carbon particles through a carbonaceous material obtained by subjecting a composition containing a polymer. As a result, when the carbon material is used as a negative electrode active material for a secondary battery, the electrical conductivity can be improved and large current load enduring characteristics and cycle characteristics can be improved. By coating the carbonaceous material onto the carbon particles having a graphite structure, destruction of the graphite structure by the polyethylene carbonate-based electrolytic solution can be prevented.
Abstract:
Coated barium titanate-based particles and a process to coat the particles are provided. The coating includes a dopant metal compound that is insoluble in water under alkaline conditions. The dopant metal in the coating is selected from the group of metals which form oxides or hydroxides that are soluble in water under alkaline conditions such as tungsten, molybdenum, vanadium, and chromium. The process involves precipitating the insoluble compound from an aqueous medium as a coating on surfaces of barium titanate-based particles. The coated barium titanate-based particles may be further processed, for example, to form dielectric materials which may be used in many electronic applications such as in MLCCs applications.
Abstract:
Agglomerate abrasive grain is disclosed. The agglomerate abrasive grain can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes. A method of making agglomerate abrasive grain is also disclosed.