Abstract:
The present invention relates to compositions, kits, and methods for molecular profiling and cancer diagnostics, including but not limited to gene expression product markers, alternative exon usage markers, and DNA polymorphisms associated with cancer. In particular, the present invention provides molecular profiles associated with thyroid cancer, methods of determining molecular profiles, and methods of analyzing results to provide a diagnosis.
Abstract:
Methods for determining a prognosis in multiple myeloma are disclosed, and in particular to methods that are capable of identifying patients with a poor prognosis and/or for determining the likelihood of a patient responding to a particular treatment. The methods identify myeloma samples having homozygous deletions in cell death genes, with dysregulated expression of 97 cell death genes forming a cell death expression signature, which is associated with poor prognosis in multiple myeloma. In a preferred aspect, three gene pairs, were found to provide a prognostic a "six gene signature" based on BUB1B and HDAC3; CDC2 and FIS1; and RAD21 and ITM2B (high expressors and low expressors respectively).
Abstract:
A method of creating a graphical representation of a plurality of components that are grouped in a plurality of component groups, wherein the component groups are formed based on two or more different group types, and values of one or more selectable metrics are associated with the components, the method including the steps of: detecting a selection of the one or more metrics; retrieving metric values for the selected metric associated with components belonging to component groups of a first group type; determining the relative proportion of the retrieved metric values across components that are members of a second type component group; and graphically representing the first type component group using one or more first icons that are graphically represented based on the retrieved metric values, and positioned within a section of the graphical representation based on the determined relative proportion.
Abstract:
An analysis of the profile of a non-human animal comprises: a) providing a genotypic database to the species of the non-human animal subject or a selected group of the species; b) obtaining animal data; c) correlating the database of a) with the data of b) to determine a relationship between the database of a) and the data of b); c) determining the profile of the animal based on the correlating step; and d) determining a genetic profile based on the molecular dietary signature, the molecular dietary signature being a variation of expression of a set of genes which may differ for the genotype of each animal or a group of animals Nutrition and pharmalogical assessments are made. Reporting the determination is by the Internet, and payment for the report is obtained through the Internet.
Abstract:
The present invention relates to the field of diagnostics, especially to the detection of autoimmune diseases such as rheumatoid arthritis. Particularly, the invention provides a method for detecting the presence or absence of rheumatoid arthritis, or of a predisposition therefore or for monitoring rheumatoid arthritis in a subject using expression data of target genes related to immune system and tools of bioinformatics.
Abstract:
Described herein are methods for predicting the recurrence, progression, and metastatic potential of a prostate cancer in a subject. For example, the method comprises detecting in a sample from a subject one or more biomarkers selected from the group consisting of FOXO1A, SOX9, CLNS1A, PTGDS, XPO1, LETMD1, RAD23B, ABCC3, APC, CHES1, EDNRA, FRZB, HSPG2, and TMPRSS2_ETV1 FUSION. The method can further comprise detecting in a sample from a subject one or more biomarkers selected from the group consisting of miR-103, miR-339, miR-183, miR-182, miR-136, and miR-221. An increase or decrease in one or more biomarkers as compared to a standard indicates a recurrent, progressive, or metastatic prostate cancer.
Abstract:
The invention is related to methods for culturing stem cells, more particularly hematopoietic stem cells (HSC). The invention relates to methods for HSC expansion and the use of factors to increase the retention and/or expansion of KLS cells in vitro. The invention is also directed to cells produced by the methods of the invention. The cells are useful, among other things, for treatment of disorders or diseases (e.g. leukemia). The invention also relates to the development of small molecules that may increase HSC self renewal in vitro and in vivo.
Abstract:
The present invention relates to the analysis of data to identify relationships between the input data and one or more conditions. One method of analysing such data is by the use of neural networks which are non-linear statistical data modelling tools, the structure of which may be changed based on information that is passed through the network during a training phase. A known problem that affects neural networks is the issue of overtraining which arises in overcomplex or overspecified systems when the capacity of the network significantly exceeds the needed parameters. The present invention provides a method of analysing data using a neurai network with a constrained architecture that mitigates the problems associated with the prior art.