METHODS FOR DETERMINING A PROGNOSIS IN MULTIPLE MYELOMA
    83.
    发明申请
    METHODS FOR DETERMINING A PROGNOSIS IN MULTIPLE MYELOMA 审中-公开
    确定多发性骨髓瘤预后的方法

    公开(公告)号:WO2010064016A3

    公开(公告)日:2010-08-26

    申请号:PCT/GB2009002815

    申请日:2009-12-04

    Abstract: Methods for determining a prognosis in multiple myeloma are disclosed, and in particular to methods that are capable of identifying patients with a poor prognosis and/or for determining the likelihood of a patient responding to a particular treatment. The methods identify myeloma samples having homozygous deletions in cell death genes, with dysregulated expression of 97 cell death genes forming a cell death expression signature, which is associated with poor prognosis in multiple myeloma. In a preferred aspect, three gene pairs, were found to provide a prognostic a "six gene signature" based on BUB1B and HDAC3; CDC2 and FIS1; and RAD21 and ITM2B (high expressors and low expressors respectively).

    Abstract translation: 公开了用于确定多发性骨髓瘤预后的方法,具体涉及能够鉴定预后不良的患者和/或确定患者对特定治疗作出反应的可能性的方法。 该方法鉴定在细胞死亡基因中具有纯合缺失的骨髓瘤样品,其中97个细胞死亡基因的表达失调形成细胞死亡表达标签,其与多发性骨髓瘤的不良预后相关。 在优选的方面,发现三种基因对提供了基于BUB1B和HDAC3的“六基因标签”的预后; CDC2和FIS1; 和RAD21和ITM2B(分别是高级表达器和低表达器)。

    COMPONENT DATA VISUALIZATION METHOD
    84.
    发明申请
    COMPONENT DATA VISUALIZATION METHOD 审中-公开
    组件数据可视化方法

    公开(公告)号:WO2010082838A1

    公开(公告)日:2010-07-22

    申请号:PCT/NZ2009/000280

    申请日:2009-12-08

    Abstract: A method of creating a graphical representation of a plurality of components that are grouped in a plurality of component groups, wherein the component groups are formed based on two or more different group types, and values of one or more selectable metrics are associated with the components, the method including the steps of: detecting a selection of the one or more metrics; retrieving metric values for the selected metric associated with components belonging to component groups of a first group type; determining the relative proportion of the retrieved metric values across components that are members of a second type component group; and graphically representing the first type component group using one or more first icons that are graphically represented based on the retrieved metric values, and positioned within a section of the graphical representation based on the determined relative proportion.

    Abstract translation: 一种创建分组在多个组件组中的多个组件的图形表示的方法,其中组件组基于两个或多个不同的组类型形成,并且一个或多个可选度量的值与组件相关联 所述方法包括以下步骤:检测所述一个或多个度量的选择; 检索与属于第一组类型的组件组的组件相关联的所选度量的度量值; 确定所检索的度量值在作为第二类型组件组的成员的组件之间的相对比例; 并且使用基于所检索的度量值以图形方式表示的一个或多个第一图标来图形地表示第一类型组件组,并且基于所确定的相对比例位于图形表示的一部分内。

    DIAGNOSTIC SYSTEM FOR SELECTING NUTRITION AND PHARMACOLOGICAL PRODUCTS FOR ANIMALS
    85.
    发明申请
    DIAGNOSTIC SYSTEM FOR SELECTING NUTRITION AND PHARMACOLOGICAL PRODUCTS FOR ANIMALS 审中-公开
    用于选择动物营养和药物产品的诊断系统

    公开(公告)号:WO2010075009A2

    公开(公告)日:2010-07-01

    申请号:PCT/US2009/067765

    申请日:2009-12-11

    CPC classification number: G01N33/6803 G06F19/18 G06F19/20

    Abstract: An analysis of the profile of a non-human animal comprises: a) providing a genotypic database to the species of the non-human animal subject or a selected group of the species; b) obtaining animal data; c) correlating the database of a) with the data of b) to determine a relationship between the database of a) and the data of b); c) determining the profile of the animal based on the correlating step; and d) determining a genetic profile based on the molecular dietary signature, the molecular dietary signature being a variation of expression of a set of genes which may differ for the genotype of each animal or a group of animals Nutrition and pharmalogical assessments are made. Reporting the determination is by the Internet, and payment for the report is obtained through the Internet.

    Abstract translation: 对非人动物的分布的分析包括:a)向非人类动物受试者或选定群体提供基因型数据库; b)获取动物数据; c)将a)的数据库与b的数据相关联,以确定a)的数据库与b)的数据之间的关系; c)基于相关步骤确定动物的轮廓; 和d)基于分子膳食特征确定遗传谱,分子饮食标记是一组基因的表达变异,其可以对于每种动物或一组动物的基因型而不同。进行营养和药学评估。 通过互联网报告决定,通过互联网获得报告的付款。

    PROSTATE CANCER BIOMARKERS TO PREDICT RECURRENCE AND METASTATIC POTENTIAL
    87.
    发明申请
    PROSTATE CANCER BIOMARKERS TO PREDICT RECURRENCE AND METASTATIC POTENTIAL 审中-公开
    预测癌症生物标志物预测复发和分化潜力

    公开(公告)号:WO2010056993A2

    公开(公告)日:2010-05-20

    申请号:PCT/US2009/064384

    申请日:2009-11-13

    Abstract: Described herein are methods for predicting the recurrence, progression, and metastatic potential of a prostate cancer in a subject. For example, the method comprises detecting in a sample from a subject one or more biomarkers selected from the group consisting of FOXO1A, SOX9, CLNS1A, PTGDS, XPO1, LETMD1, RAD23B, ABCC3, APC, CHES1, EDNRA, FRZB, HSPG2, and TMPRSS2_ETV1 FUSION. The method can further comprise detecting in a sample from a subject one or more biomarkers selected from the group consisting of miR-103, miR-339, miR-183, miR-182, miR-136, and miR-221. An increase or decrease in one or more biomarkers as compared to a standard indicates a recurrent, progressive, or metastatic prostate cancer.

    Abstract translation: 本文描述了用于预测受试者中前列腺癌的复发,进展和转移潜能的方法。 例如,该方法包括在受试者的一个样品中检测一种或多种选自FOXO1A,SOX9,CLNS1A,PTGDS,XPO1,LETMD1,RAD23B,ABCC3,APC,CHES1,EDNRA,FRZB,HSPG2和 TMPRSS2_ETV1 FUSION。 该方法还可以包括在受试者的样品中检测一种或多种选自miR-103,miR-339,miR-183,miR-182,miR-136和miR-221的生物标志物。 与标准物相比,一种或多种生物标志物的增加或减少表示复发,进行性或转移性前列腺癌。

    DATA ANALYSIS METHOD AND SYSTEM
    89.
    发明申请
    DATA ANALYSIS METHOD AND SYSTEM 审中-公开
    数据分析方法与系统

    公开(公告)号:WO2010046697A1

    公开(公告)日:2010-04-29

    申请号:PCT/GB2009/051412

    申请日:2009-10-20

    CPC classification number: G06N3/105 C12Q1/6886 G06F19/20 G06F19/24 Y02A90/26

    Abstract: The present invention relates to the analysis of data to identify relationships between the input data and one or more conditions. One method of analysing such data is by the use of neural networks which are non-linear statistical data modelling tools, the structure of which may be changed based on information that is passed through the network during a training phase. A known problem that affects neural networks is the issue of overtraining which arises in overcomplex or overspecified systems when the capacity of the network significantly exceeds the needed parameters. The present invention provides a method of analysing data using a neurai network with a constrained architecture that mitigates the problems associated with the prior art.

    Abstract translation: 本发明涉及用于识别输入数据与一个或多个条件之间的关系的数据分析。 分析这种数据的一种方法是使用作为非线性统计数据建模工具的神经网络,其结构可以基于在训练阶段通过网络传递的信息来改变。 影响神经网络的一个已知问题是当网络容量显着超过所需参数时,在过度复杂或过度指定的系统中出现的过度训练问题。 本发明提供了一种使用具有约束架构的神经元网络来分析数据的方法,其减轻了与现有技术相关的问题。

Patent Agency Ranking