-
公开(公告)号:WO2021109633A1
公开(公告)日:2021-06-10
申请号:PCT/CN2020/111681
申请日:2020-08-27
Applicant: 广东电网有限责任公司 , 广东电网有限责任公司佛山供电局
Abstract: 一种基于粒子群算法的输电线路绕击跳闸率测评方法,搭建一个试验平台,试验平台包括冲击电压发生器(11)、数据测量分析控制模块(17)、无线电流传感器(7)、同轴电缆(24)、第一基杆塔(21)、第二基杆塔(22)、第三基杆塔(23)、避雷线一(81)、避雷线二(82)、A相线路(91)、B相线路(92)、C相线路(93),基于所建立的试验平台进行绕击跳闸率测评:将C相线路(93)连接冲击电压发生器(11),冲击电压发生器(11)连接线上环绕无线电流传感器(7),将测量数据由无线电流传感器(7)反馈给数据测量分析控制模块(17),利用绕击耐雷水平实测值,结合粒子群算法优化绕击耐雷水平理论公式,进而得到绕击跳闸率。该测评方法能有效计算西北山区土壤与气候条件下输电线路绕击跳闸率,从而实现对于输电线路与杆塔结构的绕击安全测评。
-
公开(公告)号:WO2021109386A1
公开(公告)日:2021-06-10
申请号:PCT/CN2020/083864
申请日:2020-04-09
Applicant: 中国科学院自动化研究所
Abstract: 一种基于效用模型的个性化诊疗方法的确定方法及系统,所述确定方法包括:对历史用户病症特征数据进行预处理,得到用户特征(100);基于粒子群算法,根据所述历史用户病症数据,构建改善方法的效用矩阵(200);根据所述效用矩阵及所述用户特征和当前用户的需求,得到针对该当前用户的个性化诊疗方法(300)。通过对多症状特征数据进行降维和归一化处理;并通过粒子群算法构建改善方法效用矩阵;根据效用矩阵、历史用户病症数据得到总效用值,根据历史改善情况调整判断改善效果阈值;根据历史病症情况数据调整决策策略为成本最低时的阈值,从而可有效确定针对该当前用户的个性化诊疗方法。
-
83.
公开(公告)号:WO2021089749A1
公开(公告)日:2021-05-14
申请号:PCT/EP2020/081227
申请日:2020-11-06
Applicant: ROBERT BOSCH GMBH
Inventor: ROMER, Achim
Abstract: Bei einem Verfahren zum Ermitteln einer unzulässigen Abweichung einer technischen Einrichtung mithilfe eines künstlichen neuronalen Netzes, dem in einer Lernphase Eingangsdaten und Ausgangsdaten der technischen Einrichtung zugeführt werden, werden in einer anschließenden Prädiktionsphase dem neuronalen Netz nur die Eingangsdaten zugeführt und im neuronalen Netz Ausgangsvergleichsdaten berechnet, die mit den Ausgangsdaten der technischen Einrichtung verglichen werden.
-
公开(公告)号:WO2021081559A2
公开(公告)日:2021-04-29
申请号:PCT/US2020/070691
申请日:2020-10-23
Applicant: CARL ZEISS MICROSCOPY GMBH
Inventor: ANDREW, Matthew , THOMPSON, William , CORREA, Joaquin , HILL, Edward , TORDORFF, Benjamin , MORALEE, Richard
IPC: G06T3/40 , G06T5/50 , G01N23/00 , G06N3/00 , G01N2223/402 , G01N2223/418 , G01N2223/616 , G01N23/2252 , G06K9/00 , G06T2207/10056 , G06T2207/10116 , G06T2207/20081 , G06T2207/20084 , G06T3/4046
Abstract: A method of enhancing a resolution of an EDS image of a sample includes generating an EDS image of the sample, generating a non-EDS image of the sample generating, using a machine learning algorithm, an enhanced resolution EDS image of the sample based on the generated feature map and based on the first EDS image, where a resolution of the enhanced resolution EDS image is higher than a resolution of the first EDS image.
-
公开(公告)号:WO2021063486A1
公开(公告)日:2021-04-08
申请号:PCT/EP2019/076528
申请日:2019-10-01
Applicant: HUAWEI TECHNOLOGIES CO., LTD. , TALYANSKY, Roman
Inventor: KISILEV, Pavel , DANIAL, Dorin , CHALOM, Edmond , KATZ, Michael , SHE, Xiaoli , JIN, Shuyi , YU, Jiawei
Abstract: Automatically detecting failure root cause in an autonomous vehicle, by receiving sensor data captured during a period preceding the failure by sensor(s) deployed to sense an environment of the autonomous vehicle, analyzing the sensor data to identify object(s) in the environment, creating a failure scenario defining a time-lined motion pattern of each object, computing a feature vector comprising features extracted from an output generated by sub-systems of the autonomous vehicle during the failure scenario, applying to the feature vector machine learning classification model(s) trained with a plurality of labeled feature vectors computed for a plurality of failure scenarios and their corresponding success scenarios, identifying key features significantly contributing to an outcome of the trained machine learning classification model(s) by applying an interpretation model to the machine learning classification model(s), the feature vector(s) and/or the outcome and estimating root cause failure sub-system(s) according to its association with the key feature(s).
-
公开(公告)号:WO2021055442A1
公开(公告)日:2021-03-25
申请号:PCT/US2020/051027
申请日:2020-09-16
Applicant: GOOGLE LLC
Inventor: ANGELOVA, Anelia , PIERGIOVANNI, Anthony J. , RYOO, Michael Sahngwon
Abstract: Generally, the present disclosure is directed to a neural architecture search process for finding small and fast video processing networks for understanding of video data. The neural architecture search process can automatically design networks that provide comparable video processing performance at a fraction of the computational and storage cost of larger existing models, thereby conserving computing resources such as memory and processor usage.
-
公开(公告)号:WO2021049986A1
公开(公告)日:2021-03-18
申请号:PCT/SE2019/050867
申请日:2019-09-13
Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
Inventor: TIMO, Roy , BERG, Miguel , WERNERSSON, Niklas , WANG, Zhao
Abstract: Embodiments herein e.g. discloses a method performed by a radio unit (13) for handling a number of received radio signals over an array of antennas comprised in the radio unit (13). The radio unit transforms the number of received radio signals into a number of sequences of complex symbols. The radio unit further filters the number of sequences of complex symbols by inputting the number of sequences of complex symbols into a trained computational model comprising an alternating sequence of linear and nonlinear functions and thereby obtaining a reduced number of sequences. The radio unit further transmits the reduced 10number of sequences to a baseband unit (12) over a front-haul link.
-
公开(公告)号:WO2021048372A1
公开(公告)日:2021-03-18
申请号:PCT/EP2020/075496
申请日:2020-09-11
Inventor: LEJKOWSKI, Michael Ludwig , KRAEMER, Michael , SAUER, Tilman , STRASSER, Andreas , RUPP, Benjamin
Abstract: Verfahren und Vorrichtung zur Überwachung und Evaluierung einer Herstellung eines Funktionsmaterials, wobei durch ein Bewerten von durch Benutzer vorgenommenen Schritten auf der Grundlage einer Datenbasis ein Rückmelden an den Benutzer, in welchem Umfang vorbestimmte Eigenschaften eines hergestellten Funktionsmaterials erreicht werden bei Abweichungen der vorgenommenen Schritte.
-
公开(公告)号:WO2021037763A1
公开(公告)日:2021-03-04
申请号:PCT/EP2020/073565
申请日:2020-08-21
Applicant: FIVE AI LIMITED
Inventor: REDFORD, John , WALKER, Simon , PETERS, Benedict , KALTWANG, Sebastian , ROGERS, Blain , SADEGHI Jonathan , GUNN, James , ELSON, Torran , CHARYTONIUK, Adam
IPC: G06N3/00 , G06N3/04 , G06N3/08 , G05D1/00 , G06K9/00 , G06N7/00 , G06T15/06 , G06N20/00 , G06N5/02 , G06N5/00
Abstract: Herein, a "perception statistical performance model" (PSPM) for modelling a perception slice of a runtime stack for an autonomous vehicle or other robotic system may be used e.g. for safety /performance testing. A PSPM is configured to: receive a computed perception ground truth t; determine from the perception ground truth t, based on a set of learned parameters, a probabilistic perception uncertainty distribution of the form p(e|t), p(e|t,c), in which p(e|t,c) denotes the probability of the perception slice computing a particular perception output e given the computed perception ground truth t and the one or more confounders c, and the probabilistic perception uncertainty distribution is defined over a range of possible perception outputs, the parameters learned from a set of actual perception outputs generated using the perception slice to be modelled, wherein each confounder is a variable of the PSPM whose value characterized a physical condition on which p(e|t,c) depends.
-
公开(公告)号:WO2021025668A1
公开(公告)日:2021-02-11
申请号:PCT/US2019/044900
申请日:2019-08-02
Applicant: GOOGLE LLC , WANTLAND, Tim , BARNHART, Melissa Lauren , JACKSON, Brian L.
Inventor: WANTLAND, Tim , BARNHART, Melissa Lauren , JACKSON, Brian L.
Abstract: A computing system can include an artificial intelligence system including one or more machine-learned models that are configured to receive a model input that includes context data, and, in response, output a model output that describes one or more semantic entities referenced by the context data. The computing system can be configured to obtain the context data during a first time interval; input the model input that includes the context data into the machine-learned model(s); receive, as an output of the machine-learned model(s), the model output that describes the one or more semantic entities referenced by the context data; store the model output in at least one tangible, non-transitory computer-readable medium; and provide, for display in a user interface during a second time interval that is after the first time interval, a suggested action with respect to the semantic entity or entities described by the model output.
-
-
-
-
-
-
-
-
-