Abstract:
An example method of cooling a compressor of a gas turbine includes, among other things, diverting a flow from a compressor, and directing the flow at the compressor in a direction, the direction having a circumferential component and an axial component.
Abstract:
A method of controlling a variable vane assembly includes the steps of sensing a first angular deflection of a first array of variable vanes about a first vane axis, and a second angular deflection of a second array of variable vanes about a second vane axis, the first array of variable vanes axially spaced from the second array of variable vanes, and adjusting the angular deflection of one of the first and second arrays of variable vanes, based on the sensed angular deflections from the other of the first and second arrays of variable vanes. A compressor including the variable vane assembly and a method of operating the variable vane assembly for a compressor are also disclosed.
Abstract:
An exemplary variable vane actuation system includes, among other things, a vane arm with a vane stem contact surface and a radially outward facing surface. The vane stem contact surface is to contact a vane stem of a variable vane and thereby actuate the variable vane about a radially extending axis. The vane stem contact surface is angled relative to both the radially extending axis and the radially outward facing surface.
Abstract:
A variable outer air seal support system according to an exemplary aspect of the present disclosure includes, among other things, a case having a plurality of slots, and an extension of a variable outer air seal segment. The extension provides at least one extension aperture. A connector pin is configured to move within the slot to move the variable outer air seal segment from a first position to a second position. The variable outer air seal segment overlaps a circumferentially adjacent variable outer air seal segment more in the first position than in the second position.
Abstract:
An example variable vane scheduling method includes adjusting variable vanes from a position based on a first schedule to a position based on a different, second schedule in response to a control feature. An example method of controlling flow through a compressor of a turbomachine includes moving variable vanes to positions that allow more flow into the compressor in response to bleed air being communicated away from the compressor.
Abstract:
A gas turbine engine includes a gearbox. The gearbox includes a housing at a forward part of a core compartment of a gas turbine engine. A plurality of accessory drives are each configured to rotatably couple the gas turbine engine accessory gearbox to one of a plurality of accessory components.
Abstract:
An exemplary weaving method includes placing a first section of a fill fiber between warp fibers, forming a pick, moving a base to reposition the warp fibers, and placing a second section of the fill fiber between the warp fibers.
Abstract:
An example turbomachine assembly includes, among other things, a nose cone of a turbomachine, and a pump at least partially within an interior of the nose cone. The pump is selectively rotated by a motor to communicate air to the interior.
Abstract:
An example fuel cell electrode forming method includes covering at least a portion of a copper monolayer with a liquid platinum and replacing the copper monolayer to form a platinum monolayer from the liquid platinum.
Abstract:
An example fuel cell assembly includes a plate having channels configured to facilitate movement of a fuel cell fluid near an area of active flow of fuel cell. The channels include portions having a varying depth that extend laterally outside of the area of active flow.