Abstract:
A method of assembling a compressor system includes attaching at least two pulsation damper stages to a discharge port on a compressor, and attaching additional pulsation dampening stages if additional stages are desired. A compressor and discharge system is also disclosed.
Abstract:
A mid-turbine frame for use in a gas turbine engine comprises at least one vane extending between a vane inner platform and a vane outer platform, and an inner case radially inward of the inner platform. A plurality of tie rods extend from a platform radially inward of the inner case to a radially outer location which is secured by a mount member. The tie rods are secured in the inner case by a forward bolt, and at least one rear bolt, with the forward bolt extending along an axis which is non-parallel to a center axis of the inner case. A gas turbine engine and a method for assembling a mid-turbine frame are also disclosed.
Abstract:
A turbine component comprises a platform and an airfoil extending radially away from the platform and extending from a leading edge to a trailing edge. A leading edge portion defines the leading edge of the airfoil and a trailing edge portion including the trailing edge. One of the leading and trailing edge portions also includes the platform. The leading edge portion is formed of a first material distinct from a second material forming the trailing edge portion. The first material has an operating temperature capability at least 100F higher than that of the second material. A gas turbine engine is also disclosed.
Abstract:
A gear reduction for a gas turbine engine comprises a carrier driven to rotate gears. The gears are supported by journal bearings. The carrier extends through a transfer bearing, which provides oil to passages within the carrier to supply oil to the gears and to the journal bearings. A device limits leakage oil from the transfer bearing to axial ends of the transfer bearing to a controlled amount. A gas turbine engine is also disclosed.
Abstract:
This disclosure relates to a gas turbine engine. The engine includes a component having a first wall and a second wall spaced-apart from the first wall. The component further includes a cooling passageway provided in part by a helical wall between the first wall and the second wall.
Abstract:
A platform for a gas turbine engine has an outer surface and an inner surface. The inner surface is provided with a mount location for mounting the platform to a rotor. The platform extends from a leading edge to a trailing edge, and between a suction wall and a pressure wall. A circumferential direction is defined between the suction wall and the pressure wall. A tab extend circumferentially outward of one of the suction and pressure walls from the platform. The tab has a circumferentially outermost portion which will abut an inner surface of an adjacent platform when the platform is mounted. A fan section and a gas turbine engine are also disclosed.
Abstract:
A vane for use in a gas turbine engine has an airfoil extending between a leading edge and a trailing edge, a radially outer platform and a radially inner platform. A rib is on one of the radially inner and radially outer platforms, and is adjacent the trailing edge of the airfoil. A mid-turbine frame is also disclosed.
Abstract:
A combustor for use in a gas turbine engine has a combustor outer shell. A panel has an inner face which will face hot products of combustion, and a boss surrounding a feature, with the boss extending to an outer end. A spacing surface is spaced from the boss, and is at an outer position that is inward of the outer end of the boss. The spacing surface spaces the panel from the outer shell. A trough is intermediate the boss and the spacing surface. The trough extends to an outer end which is inward of the outer position of the spacing surface. A gas turbine engine is also disclosed.
Abstract:
A rotating element is associated with at least one bearing compartment that includes a bearing to support the rotating element. A seal resists leakage of lubricant outwardly of the bearing compartment and allows air to flow from a chamber across the seal and into the bearing compartment. The seal has a seal face facing a rotating face rotating with the rotating element. The seal is a non-contact seal. A gas turbine engine is also disclosed.
Abstract:
A method of manufacturing a military engine includes the steps of designing a commercial engine core, including a combustor, a high pressure compressor driven by a high pressure turbine, and a low pressure turbine designed to drive a low pressure compressor, and a fan through a gear reduction. A high speed fan is attached to the low pressure turbine, such that the combustor, high pressure compressor, low and high pressure turbines from an engine designed for commercial purposes is utilized for military purposes. A gas turbine engine is also disclosed.