Abstract:
A medical imaging system comprises an image data acquisition module to acquire imaging data and a motion detection module to acquire motion information. A reconstruction module reconstructs image datasets from the imaging data and with use of the motion information to correct for motion. The motion detection module is provided with a shape-sensing photonic fibre system to provide a photonic output representative of the spatial shape of the photonic fibre and an arithmetic unit to compute the motion information on the basis of the photonic output.
Abstract:
A method of correcting a magnetic field of an MRI radiotherapy apparatus (300) comprising a magnetic resonance imaging system (302) and a radiation therapy system (304). The MRI system includes a magnet (306) for generating the magnetic field within an imaging zone 318. The magnet generates a magnetic field with a zero crossing (346, 404) outside of the imaging zone. The medical apparatus further comprises a gantry (332) configured for rotating a ferromagnetic component (336, 510) about a rotational axis (333). The method comprises the step of installing (100, 200) a magnetic correcting element (348, 900, 1000) located on a radial path (344, 504) perpendicular to the rotational axis. The magnetic correcting element is positioned on the radial path such that change in the magnetic field within the imaging zone due to the ferromagnetic component is reduced. The method further comprises repeatedly: measuring (102, 202, 1204) the magnetic field within the imaging zone; determining (104, 204, 1206) the change in the magnetic field in the imaging zone; and adjusting (106, 206, 1208) the position of the magnetic correcting element along the radial path if the change in the magnetic field is above a predetermined threshold.
Abstract:
A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone..