Abstract:
A support device for assisting a wearer in the administration of cardiopulmonary resuscitation (CPR), the device comprising: a wearable support for strengthening at least one of the wearer's wrist, hand or forearm, the wearable support being adapted to circumscribe a majority of the circumference of the at least one of the wearer's wrist, hand or forearm; wherein the wearable support is adapted to be in close contact with the at least one of the wearer's wrist, hand or forearm, to provide support to the wearer through compression of the at least one of the wearer's wrist, hand or forearm.
Abstract:
A device for the determination of at least one compression parameter during administration of cardiopulmonary resuscitation (CPR) on a patient comprising: a field generator, a field detector, and a processor. Position information and the compression parameter are determined from the field detected by the field detector. One of the field generator and the field detector is a position sensor and the other is a reference sensor.
Abstract:
A wearable cardiopulmonary resuscitation assist device or system including: a wearable article to be worn by a cardiopulmonary resuscitation performer or a patient, for assisting administration of cardiopulmonary resuscitation by the performer; at least one sensor for measuring at least one parameter to assist in cardiopulmonary resuscitation; at least one feedback component for conveying feedback information based on the parameter to the performer for assisting the performer in performing cardiopulmonary resuscitation; and a processing unit, the processing unit being configured to receive the at least one parameter from the at least one sensor and to send information based on the parameter to the at least one feedback component. Also a method for training or improving cardiopulmonary resuscitation procedures using the device.
Abstract:
Embodiments of the present invention are related to a method and device for the determination and calculation of the depth of chest compressions during the administration of cardiopulmonary resuscitation (CPR). Embodiments use an optical sensor to monitor the distance that a victim's chest is displaced during each compression throughout the administration of CPR. The optical sensor is most commonly an image sensor such as a CMOS or CCD sensor, and more specifically a CMOS image sensor capable of three-dimensional imaging based on the time-of-flight principle. An infrared emitter may illuminate the victim's body and any visible piece of ground beside the victim. As the infrared light interacts with any surfaces it encounters, it is reflected and returns to the image sensor where the time of flight of the infrared light is calculated for every pixel in the image sensor. The distance data is used to gauge the effective displacement of the victim's chest. The optical sensors can be used to visualize the size of a patient and immediately gauge the body type and instruct the user accordingly. Furthermore, optical measurement techniques can be used to accurately measure chest rise during artificial respiration and ensure that proper ventilation is being administered in between compressions. In addition, optical measurements of the chest of the victim and the hands of the rescuer can be used to help ensure that the rescuer has positioned his or her hands in the anatomically correct location for effective CPR.
Abstract:
A system and method for determining depth of compressions of a chest of a patient receiving chest compressions or cardiopulmonary resuscitation (CPR) A field, such as an electromagnetic field, is generated by a field generator which is stationary relative to the patient and detected by a compound field detector moving with the chest of the patient The compound field detector includes at least two coils at a fixed distance and is adapted to generate a response signal indicative of at least one of the at least two coils detecting the field
Abstract:
Embodiments of the present invention are related to a method and device for the determination and calculation of the depth of chest compressions during the administration of cardiopulmonary resuscitation (CPR). Embodiments use an optical sensor to monitor the distance that a victim's chest is displaced during each compression throughout the administration of CPR. The optical sensor is most commonly an image sensor such as a CMOS or CCD sensor, and more specifically a CMOS image sensor capable of three-dimensional imaging based on the time-of-flight principle. An infrared emitter may illuminate the victim's body and any visible piece of ground beside the victim. As the infrared light interacts with any surfaces it encounters, it is reflected and returns to the image sensor where the time of flight of the infrared light is calculated for every pixel in the image sensor. The distance data is used to gauge the effective displacement of the victim's chest. The optical sensors can be used to visualize the size of a patient and immediately gauge the body type and instruct the user accordingly. Furthermore, optical measurement techniques can be used to accurately measure chest rise during artificial respiration and ensure that proper ventilation is being administered in between compressions. In addition, optical measurements of the chest of the victim and the hands of the rescuer can be used to help ensure that the rescuer has positioned his or her hands in the anatomically correct location for effective CPR.
Abstract:
A device for the determination of at least one compression parameter during the administration of cardiopulmonary resuscitation (CPR) on a patient especially when the patient is being resuscitated on a non-rigid, flexible or pliant surface, the device comprising a compression unit adapted to move in accordance with the chest of a patient and having one of a signal component and a reference component, a surface unit adapted to move in accordance with a surface supporting the patient and having the other of the signal component and the reference component, and a processor configured to determine a relative measurement between the compression unit and the surface unit, and the compression parameter based on the relative measurement, where the compression parameter takes into account at least any motion of the surface and any displacement of the surface.