Abstract:
Anti-reflective coating materials for ultraviolet photolithography include at least one absorbing compound and at least one material modification agent, such as at least one porogen, at least one high-boiling solvent, at least one capping agent, at least one leveling agent, at least one catalyst, at least one replacement solvent, at least one pH tuning agent, and/or a combination thereof that are incorporated into inorganic-based materials or inorganic compositions and/or compounds. Suitable absorbing compounds are those that absorb around wavelengths such as 365 nm, 248 nm, 193 nm and 157 nm that may be used in photolithography.
Abstract:
Anti-reflective coating materials for ultraviolet photolithography include at least one organic light-absorbing compound incorporated into spin-on-glass materials. Suitable absorbing compounds are strongly absorbing over wavelength ranges around wavelengths such as 365 nm, 248 nm, 193 nm and 157 nm that may be used in photolithography. A method of making absorbing spin-on-glass materials includes combining at least one organic absorbing compound with alkoxysilane or halosilane reactants during synthesis of the spin-on-glass materials.
Abstract:
Anti-reflective coating materials for ultraviolet photolithography include at least one absorbing compound and at least one material modification agent, such as at least one porogen, at least one high-boiling solvent, at least one capping agent, at least one leveling agent, at least one catalyst, at least one replacement solvent, at least one pH tuning agent, and/or a combination thereof that are incorporated into inorganic-based materials or inorganic compositions and/or compounds. Suitable absorbing compounds are those that absorb around wavelengths such as 365 nm, 248 nm, 193 nm and 157 nm that may be used in photolithography.
Abstract:
Anti-reflective coating materials for ultraviolet photolithography include at least one absorbing compound and at least one material modification agent, such as at least one porogen, at least one high-boiling solvent, at least one densifying agent, at least one capping agent, at least one leveling agent, at least one catalyst, at least one replacement solvent, at least one pH tuning agent, and/or a combination thereof that are incorporated into inorganic-based materials or inorganic compositions and/or compounds. Suitable absorbing compounds are those that absorb around wavelengths such as 365 nm, 248 nm, 193 nm and 157 nm that may be used in photolithography.
Abstract:
Anti-reflective coating materials for ultraviolet photolithography include at least one absorbing compound and at least one material modification agent, such as at least one porogen, at least one high-boiling solvent, at least one densifying agent, at least one capping agent, at least one leveling agent, at least one catalyst, at least one replacement solvent, at least one pH tuning agent, and/or a combination thereof that are incorporated into inorganic-based materials or inorganic compositions and/or compounds. Suitable absorbing compounds are those that absorb around wavelengths such as 365 nm, 248 nm, 193 nm and 157 nm that may be used in photolithography.
Abstract:
Anti-reflective coating materials for ultraviolet photolithography include at least one absorbing compound and at least one material modification agent, such as at least one porogen, at least one high-boiling solvent, at least one densifying agent, at least one capping agent, at least one leveling agent, at least one catalyst, at least one replacement solvent, at least one pH tuning agent, and/or a combination thereof that are incorporated into inorganic-based materials or inorganic compositions and/or compounds. Suitable absorbing compounds are those that absorb around wavelengths such as 365 nm, 248 nm, 193 nm and 157 nm that may be used in photolithography.
Abstract:
Anti-reflective coating materials for ultraviolet photolithography include at least one absorbing compounds and at least one pH tuning agent that are incorporated into spin-on materials. Suitable absorbing compounds are those that absorb around wavelengths such as 365 nm, 248 nm, 193 nm and 157 nm that may be used in photolithography. Suitable pH tuning agents not only adjust the pH of the final spin-on composition, but also influence the chemical performance and characteristics, mechanical performance and structural makeup of the final spin-on composition that is part of the layered material, electronic component or semiconductor component, such that the final spin-on composition is more compatible with the resist material that is coupled to it. More specifically, the pH tuning agent strong influences the polymeric characteristics, the structural makeup and the spatial orientation that results in increasing the surface properties of the anti-reflective coating for optimal resist performance. In other words, a pH tuning agent that merely adjusts the pH of the spin-on material without influencing the mechanical properties and structural makeup of the spin-on composition or the coupled resist material is not contemplated herein. A method of making absorbing and pH tuned spin-on materials includes combining at least one organic absorbing compound and at least one pH tuning agent with at least one silane reactant during synthesis of the spin-on materials and compositions.