Abstract:
Examples disclosed herein relate to quantum-dot (QD) photonics. In accordance with some of the examples disclosed herein, a QD semiconductor optical amplifier (SOA) may include a silicon substrate and a QD layer above the silicon substrate. The QD layer may include an active gain region to amplify a lasing mode received from an optical signal generator. The QD layer may have a gain recovery time such that the active gain region amplifies the received lasing mode without pattern effects. A waveguide may be included in an upper silicon layer of the silicon substrate. The waveguide may include a mode converter to facilitate optical coupling of the received lasing mode between the QD layer and the waveguide.
Abstract:
An avalanche photodiode with a defect-assisted silicon absorption region. An example includes a substrate; a layer of silicon on the substrate, the layer of silicon including a positively-doped region, a negatively-doped region, and an absorption region between the positively-doped and negatively-doped regions, the absorption region including defects in its crystal structure; and contacts in electrical communication with the positively-doped and negatively-doped regions to receive a bias potential.
Abstract:
Apparatuses and systems for analyzing light by mode interference are provided. An example of an apparatus for analyzing light by mode interference includes a number of waveguides to support in a multimode region two modes of the light of a particular polarization and a plurality of scattering objects offset from a center of at least one of the number of waveguides.
Abstract:
Techniques related to optical connectors are described. A ferrule includes an optical pathway for light transmission through the ferrule. In examples, a sub-wavelength grating (SWG) assembly is integrated in the ferrule, aligned with an end of the optical pathway.
Abstract:
An integrated grating element system includes a first transparent layer formed on an optoelectronic substrate layer which includes at least two optoelectronic components, a first grating layer disposed on the first transparent layer which includes at least two sub-wavelength grating elements formed therein aligned with active regions of the optoelectronic components, and a second grating layer placed at a distance from the first grating layer such that light propagates between a diffraction grating element formed within the second grating layer and the at least two sub-wavelength grating elements.
Abstract:
An optical connector includes a first optical fiber and a second optical fiber. A first planar lens is positioned to operate on light exiting the first optical fiber to create a predetermined change in a wave front of the light. A second planar lens is positioned to accept the light from the first planar lens, the second planar lens focusing the light onto the second optical fiber. The first planar lens and second planar lens each include a regularly spaced array of posts with periodically varying diameters.
Abstract:
Techniques related to optical connectors are described herein. In some examples, an optical connector is illustrated including a ferrule and a mating arrangement to mechanically attach the ferrule to an optical device. The mating element defines an insertion direction. The ferrule includes an optical pathway for light transmission through the ferrule. An end longitudinal section of the optical pathway is to optically couple the optical pathway to the optical device. The end longitudinal section is angled with respect to the insertion direction.
Abstract:
Vertical-cavity surface-emitting lasers ("VCSELs") and VCSEL arrays are disclosed. In one aspect, a surface-emitting laser includes a grating layer having to form a resonant cavity with a reflective layer for a wavelength of light to be emitted from a light-emitting layer and an aperture layer disposed within the resonant cavity. The VCSEL includes a charge carrier transport layer disposed between the grating layer and the light-emitting layer. The transport layer has a gap adjacent to the sub-wavelength grating and a spacer region between the gap and the light-emitting layer. The spacer region and gap are dimensioned to be substantially transparent to the wavelength. The aperture layer directs charge carriers to enter a region of the light-emitting layer adjacent to an aperture in the aperture layer and the aperture confines optical modes to be emitted from the light-emitting layer.
Abstract:
A micro-ring resonator (200) includes a bus optical waveguide (210) and a circular optical waveguide (206) positioned adjacent to the bus optical waveguide (210) so as to provide evanescent coupling of light between the waveguides (206, 210). The cladding of the circular optical waveguide (206) comprises an electro-optic polymer (302) with an index of refraction that can be changed through application of an electric field (312).
Abstract:
Planar, polarization insensitive, optical elements to control refraction of transmitted light in free space are disclosed. In one aspect, an optical element includes a substrate having a planar surface, and a polarization insensitive, high contrast, sub-wavelength grating composed of posts that extend from the planar surface. The grating has at least one region. Within each region, cross-sectional dimensions of the posts and/or lattice arrangement of the posts are nonperiodically varied to control refraction of light transmitted through the optical element.