Abstract:
The present disclosure is directed to tantalum-alloy products, implantable medical devices that incorporate tantalum-alloy products such as stents or other implantable medical devices, methods of making and/or processing the tantalum-alloy products and implantable medical devices, and methods of using the implantable medical devices. In an embodiment, a stent includes a stent body having a plurality of struts. At least a portion of the stent body is made from a tantalum alloy. The tantalum alloy includes a tantalum content of about 77 weight % ("wt %") to about 92 wt %, a niobium content of about 7 wt % to about 13 wt %, and a tungsten content of about 1 wt % to about 10 wt %. The tantalum alloy exhibits at least one mechanical property modified by heat treatment thereof, such as yield strength, ultimate tensile strength, or ductility.
Abstract:
Stent delivery system (1) comprising a catheter (2) having an inner tube (3) and an outer tube (4) surrounding the inner tube (3); a balloon (5) having a proximal end (6) fixed to the outer tube (4) a distal end (7) fixed to the inner tube (3) and an interior (10) including a proximal portion (10A) and distal portion (10B), a stent (8) disposed on said balloon (5) and being expandable from a delivery position to a deployed position by a contrast medium (9) adapted to be supplied to the interior (10) of said balloon (5), and a contrast medium distribution means (11) disposed in the interior (10) of said balloon (5) adapted to equally distribute the contrast medium (9) to both the proximal portion (10A) and the distal portion (10B) of the interior (10) of the balloon (5).
Abstract:
Generally, the present disclosure includes a hybrid segmented endoprosthesis for delivery into a lumen of a body. The hybrid segmented endoprosthesis has different types of segments that are joined together. The segments are typically distinct and distinguishable from each other by each segment having a unique configuration different from at least one other segment. Additionally, the segments can be coupled together by various processes well known for interconnecting the materials of endoprostheses. The segmented endoprosthesis can provide improved deliverability, strength, flexibility, and/or functionality during and after deployment. The use of a segmented endoprosthesis can combine the configurations of multiple small endoprostheses into a standard- or regular-sized endoprosthesis.
Abstract:
The present invention relates to an endoprosthesis that is expandable from a contracted configuration to an expanded configuration and that includes a plurality of longitudinally adjacent web rings. Each of the web rings is defined by web elements disposed circumferentially around a longitudinal axis, which are adjoined one to the other at junction bends. A first junction bend in a first web ring is coupled to a second junction bend in a second web ring by a connector which includes three or more struts of essentially equal length that extend circumferentially in essentially parallel directions. The struts of the connector are adjoined in sequence by coupling segments that, in one embodiment of the invention, are arcuate in shape. In another configuration, the connector is a flexible connector that is structured to absorb at least some of the axial and torsional stresses applied to the endoprosthesis.
Abstract:
The present disclosure is directed to a drug-eluting implantable medical devices that includes a tantalum-alloy body having a drug-eluting coating thereon for delivering a drug to treat, for example, restenosis. In an embodiment, an implantable medical device includes a body sized and configured to be implanted in a living subject. At least a portion of the body may comprise a tantalum alloy. The tantalum alloy includes a tantalum content of about 77 weight % ("wt %") to about 92 wt %, a niobium content of about 7 wt % to about 13 wt %, and a tungsten content of about 1 wt % to about 10 wt %. The tantalum alloy exhibits at least one mechanical property modified by heat treatment thereof. The body has a drug-eluting coating thereon.
Abstract:
Stent-Graft aus einem Stent (1) mit einer Mehrzahl von nebeneinander angeordneten und miteinander verbundenen Ringsegmenten (3) und wenigstens einer Membran (2) mit wenigstens einem randständigen Ringsegment (4) mit mäandrierendem Stegverlauf, bei dem einwärts- oder auswärts weisende Stegschlingen (5) eingeschnitten sind, dergestalt, dass Federzungen (6) entstehen, die formschlüssig in den Stegschlingen (5) angeordnet sind und gegen den Stegverlauf federnd beweglich sind, wobei die Membran (2) zwischen Federzungen (6) und Steg eingeklemmt ist.
Abstract:
As described herein, a body lumen filter (100) is provided that includes a body configured to move between a pre-deployed state and a deployed state. In the deployed state, the body has filtering openings (150) defined therein. The body lumen filter also includes at least one anchor (140) coupled to the body, the anchor including a base and a bulbed (170) portion, having a major cross-sectional dimension that is larger than a major cross-sectional dimension of the base.
Abstract:
A stent and method for manufacturing a stent that achieves both strength as well as ductility. In the manufacturing process, the material used to form the stent is only partially annealed to lower the grain size across the thickness of the stent. The material is partially annealed either prior to or after the cutting a stent pattern into a tube.
Abstract:
The invention relates to a stent graft comprising a stent (1) having a plurality of ring segments (3) disposed adjacent to one another and connected to one another and at least one membrane (2) having at least one marginal ring segment (4) having a meandering web configuration, wherein web loops (5) which point inwards or outwards are cut in such a way as to produce spring tabs (6) which are disposed so that they engage positively in the web loops (5) and are resiliently movable against the web configuration, wherein the membrane (2) is gripped between the spring tabs (6) and the web.
Abstract:
An implantable lumen filter (200) is described. The implantable lumen filter includes a body (202) having a proximal end (202a), a distal end (202b), and a generally tapered outer surface (204). The outer surface is formed by a plurality of struts (206a, 206b). The plurality of struts forms a plurality of apertures (210). The apertures are dimensioned to inhibit and/or to lyse particulates of a selected size from passing through the apertures. The body (202) is transitionable from a collapsed state toward a deployed state. The implantable lumen filter includes an engaging portion (220) having a proximal end (220a) and a distal end (220b). The proximal end of the engaging portion is connected to a distal end of the body. The engaging portion has a generally annular shape and is configured to engage an inner surface of a body lumen.