Abstract:
A radio frequency identification (RFID) tag circuit or RFID tag may be fabricated on a printed circuit board (PCB) and/or on a printed circuit panel from which PCB's are made. In some embodiments the RFID tag may be created early in the fabrication process and become operational before the PCB has been finished.
Abstract:
Systems, apparatuses, and methods may include a human body communication data storage device having at least first and second electrodes and a human body communication modem. A storage component communicating with the human body communication modem includes a first secure storage location provided with a user-specific authentication record and a second data storage location.
Abstract:
A radio frequency identification (RFID) antenna and/or RFID tag circuit may be fabricated on a substrate. The substrate may be a wafer, a die created from a wafer, or an integrated circuit package substrate. The RFID tag may also be distributed between the die and the package substrate in an integrated circuit package. In some embodiments the RFID tag may be fabricated in the lower layers of the substrate and become operational before the rest of the circuitry on the substrate has been fabricated.
Abstract:
A radio frequency identification (RFID) antenna and/or RFID tag circuit may be fabricated on a substrate. The substrate may be a wafer, a die created from a wafer, or an integrated circuit package substrate. The RFID tag may also be distributed between the die and the package substrate in an integrated circuit package. In some embodiments the RFID tag may be fabricated in the lower layers of the substrate and become operational before the rest of the circuitry on the substrate has been fabricated.
Abstract:
A radio frequency identification (RFID) tag circuit (120, 220) or RFID tag may be fabricated on a printed circuit board (PCB) (100) and/or on a printed circuit panel from which PCB's are made. In some embodiments the RFID tag may be created early in the fabrication process and become operational before the PCB has been finished.
Abstract:
Techniques are disclosed for processing a video stream to reduce platform power by employing a stepped and distributed pipeline process, wherein CPU-intensive processing is selectively performed. The techniques are particularly well-suited for hand-based navigational gesture processing. In one example case, for instance, the techniques are implemented in a computer system wherein initial threshold detection (image disturbance) and optionally user presence (hand image) processing components are proximate to or within the system's camera, and the camera is located in or proximate to the system's primary display. In some cases, image processing and communication of pixel information between various processing stages which lies outside a markered region is suppressed. In some embodiments, the markered region is aligned with, a mouse pad or designated desk area or a user input device such as a keyboard. Pixels evaluated by the system can be limited to a subset of the markered region.
Abstract:
A sensor may be used to detect a previous or current change of state, and the change may be reported by a radio frequency identification (RFID) tag. In some embodiments, the change may represent a broken security seal, which in turn may affect an electrical connection that can be sensed by the RFID tag during operation of the RFID tag.