Abstract:
Disclosed is a counterbalance system for moving a payload and a method for counterbalancing the payload. The system and method comprise a resilient member that is in communication with the payload to be moved and two resilient members that are in communication with either end of the first resilient member. An actuator is in communication with the first and third resilient members and a payload arm, attached to the payload, is in communication with the first and second resilient members. The resilient members may be compressed and relaxed during movement of the actuator and the payload arm so that energy may be transferred between the system and the payload to counterbalance the weight of the payload.
Abstract:
Disclosed is a counterbalance apparatus, and a method for counterbalancing using an apparatus, having a center of motion that is internal or external to the apparatus. The apparatus and method are adapted to support a payload, having a load vector applied in a direction of the vector or gravity, that is positioned distal to the center of motion. The apparatus includes a gimbal adapted to support the payload and allow for its rotational movement about the center of motion generating a load torque therefrom, and a resilient member adapted to engage the gimbal and supply a support torque to counterbalance the load torque. The method includes a step of supporting the payload with a gimbal adapted to allow rotational movement of the payload about the center of motion to generate a load torque therefrom, and a step of configuring a resilient member to engage the gimbal and supply a support torque to counterbalance the load torque.
Abstract:
A counterbalance apparatus for supporting a load is provided. The apparatus includes a base, a load bearing arm, a toggle linkage, and first and second resilient members for applying a force to the load bearing arm. The load bearing arm consists of a plurality of pivot points forming a parallelogram linkage, may project from the base at an attachment point and is adapted to support the load at a distal end. The toggle linkage may be pivotally connected to the base and moveable between a non-load bearing position and a load bearing position. The toggle linkage may also comprise an adjustment member positioned to define a distance relative to the attachment point. The first resilient member is adapted to apply a force to the load bearing arm and may have a first end connected to a first portion of the parallelogram linkage and a second end connected to the adjustment member; and the second resilient member is also adapted to apply a force to the load bearing arm and may have a first end connected to a second portion of the parallelogram linkage and a second end connected to the adjustment member. Movement of the toggle linkage from the non-load bearing position to the load bearing position engages the forces of the resilient members and movement of the adjustment member varies the distance to adjust a support vector adapted to counterbalance the load vector.
Abstract:
A method for registering ultrasound (US) and computed tomography (CT) images, comprising: receiving US and CT images representative of a body portion comprising blood vessels and an initial approximate transform; enhancing the blood vessels in the US and CT images, thereby obtaining an enhanced US and CT images; creating a point-set for a given one of the enhanced US and CT images; determining a final transform between the point-set and the other one of the enhanced US and CT images using the initial transform; applying the final transform to a given one of the US and CT images to align together a coordinate system of the US image and a coordinate system of the CT image, thereby obtaining a transformed image; and outputting the transformed image.
Abstract:
Disclosed is a modular base link for use in a counterbalancing arm. The base link includes two base plates and four connection points. Two stabilizing members are connected to and extend between the base plates. Two resilient members, one of which is hingeably connected to and in communication with the two connection points, the other resilient member is hingeably connected to and in communication with the other connection points. The connection points are eccentrically and orthogonally disposed relative to each other. The resilient members are sufficiently resilient to permit movement of the base plates relative to each other so as to counterbalance the arm when a load is applied to either base plate.