Abstract:
A backplateless silicon microphone and a wire protection method for improved impact resistance are disclosed. A circular diaphragm (11) is surrounded by a circular spring (12) having a plurality of slots and perforations to facilitate air damping reduction, release of in- plane stress, and improve out-plane flexibility. Anchored at a substrate (8), the circular spring (12) holds the silicon microphone suspended over a backside hole in the substrate (8) but allows the diaphragm (11 ) to vibrate perpendicular to the substrate. A microphone variable capacitor is formed between the perforated spring and substrate. Slot size is minimized to prevent particles from entering an underlying air gap. A plurality of "n" bonding pads (16a, 16b) near the outer edge of the circular spring (12) are connected by "n/2" bonding wires that serve as a stopper to restrict an upward motion of the diaphragm. The bonding wires may cross each other to enable lower loop height for more effective resistance to impact.
Abstract:
A dispenser arrangement for fluidic dispensing control into a microfluidic component comprising an enclosed fluid holding area having a base portion and a top portion and a valve adapted to be movable between an open position and a closed position and positioned at least partially in the fluid holding area. The valve comprises an elongated hollow portion having a body and two ends adapted for fluid flow from the fluid holding area to the microfluidic component in the open position, a first opening on the body of the hollow portion positioned within the fluid holding area allowing fluid communication from the fluid holding area to the microfluidic component in the open position, a sealing portion connected to a first end of the hollow portion positioned within the fluid holding area adapted for sealing connection with the top portion of the fluid holding area in the closed position and a slant second opening at a second end of the hollow portion positioned outside of the fluid holding area. The slant second opening is adapted to pierce through a sealing layer covering the microfluidic component in the open position and to insert into a first substrate housing the microfluidic component in the closed position. A dispenser unit comprising a dispenser arrangement and an actuator, wherein the actuator is a piston is also disclosed.
Abstract:
A microfluidics package (1) comprising a substrate (6) having a top surface, said top surface comprises at least one fluid channel (11, 12), at least one fluidic chip (2) having a top surface, a bottom surface, at least one side surface, and at least one passage to allow a fluid to traverse from the top surface or any side surface to the bottom surface of the chip; and a sheet (4) of which both sides are adhesive, wherein the first adhesive side of the sheet (4) is secured to the substrate (6), and the at least one fluidic chip (2) is secured by the second adhesive side of the sheet (4), said fluidic chip (2) being arranged such that the at least one passage of the fluidic chip is in fluid communication with the at least one fluid channel (11, 12) of the substrate.
Abstract:
A sensor array integrated electrochemical chip is provided wherein the chip has an array of electrodes. The array may be formed on a base plate bonded to a cover plate having an opening. The opening can be a window or a depression. The plates are bounded such that they define a cavity, with the array being within the cavity. Conducting lines for connecting the electrodes to electrochemical instruments may be formed on the same surface of the base plate on which the electrodes are formed. At least one of the electrodes may be covered by a coating doped with a ferrocene compound. The coating may be a supported bilayer lipid membrane doped with benzoylferrocene. The doped ferrocene compound may be oxidized.