Abstract:
Medical devices, systems and methods for forming an occlusive material for occluding a left atrial appendage of a heart are provided. In one embodiment, the occlusive material includes a foam portion that extends as a single piece, seamless monolithic structure that is sized to couple to an external side of a framework of a medical device. In another embodiment, the occlusive material may include a polymeric laminate. Such polymeric laminate may be adhered to an outer side of the foam portion. Further, various embodiments for forming a polymer laminate are provided.
Abstract:
A method and system are provided for percutaneously gaining access to oxygenated blood with one or more anastomosis devices and pumping such oxygenated blood directly to the aorta adjacent to the right atrium or left atrium via a VAD system. In one embodiment, a VAD system can be implanted with open surgery.
Abstract:
Devices, systems and methods for retrieving clot material from a vasculature lumen are provided. In one embodiment, a medical device includes a handle, a catheter, a tether member and a clot retrieval element. The catheter extends from the handle and the clot retrieval element is configured to be positioned within a distal portion of the catheter with the tether member extending between the handle and the clot retrieval element. The clot retrieval element is configured to be deployed from within the catheter so that the catheter moves proximally relative to and separate from the clot retrieval element while maintaining attachment to the clot retrieval element via the tether member. Further, the clot retrieval element is configured to be pulled by the tether member to abut against a distal side of a clot with proximal movement of the tether member to pull the clot from the vasculature lumen.
Abstract:
Several embodiments are set forth of devices, systems and methods for modifying an atrial appendage such as a left atrial appendage (LAA). In one embodiment, a device includes a body (300, 320) that is collapsible and self -expanding. The body includes a textured surface with protruding portions (304, 322) and recessed portions (306,326). The body may be formed of a reticulated foam material and may exhibit a substantially spherical geometry or a truncated spherical geometry. The body may be substantially hollow. In one embodiment, portions of the textured surface may be metalized or have a coating placed thereon to enhance frictional engagement of the body with the atrial appendage wall. In another embodiment (360), a mesh bag (362) is disposed within an LAA and one or more self- expanding bodies (364) are disposed within the mesh bag. The mesh bag is then secured to retain the self -expanding bodies within the bag and the LAA.
Abstract:
A medical system and device for use in delivering RF energy to a tissue opening and a method for determining an RP dose is disclosed. In one embodiment, the medical device includes an electrode or anchor and one or more devices, such as an impedance electrode, RF electrode and/or thermocouple. The electrode or anchor can be deployed from a delivery shaft inside the left atrium, for example, of a heart and substantially conform to the tissue proximate the tissue opening. Tissue characteristics, such as temperature and/or impedance, can be measured, before, during and after application of RF energy to the tissue, by one or more devices to determine an RF dose. After energy is applied to the tissue between the left and right electrodes, the left electrode can be removed from the left atrium by being received back into the delivery shaft and the delivery shaft thereafter removed from the opening.
Abstract:
A medical device for reducing the size of a Patent Foramen Ovale is disclosed. The medical device can include a first electrode, a second electrode, and at least one sensor mounted to at least one of the first electrode or the second electrode, the at least one sensor adapted to sense at least one operating parameter of the medical device or the patient to facilitate closure of the Patent Foramen Ovale. The medical device can also include a delivery shaft coupled to the first electrode, wherein the delivery shaft includes an indicia for determining the position of the first electrode relative to the second electrode. A method for determining a characteristic of an internal tissue opening is also disclosed. The method can include the steps of introducing a detectable fluid in the right atrium of a heart and then detecting the location of the detectable fluid in the heart.
Abstract:
A medical device and system for modifying a left atrial appendage ("LAA"), as well as related methods, are provided. In accordance with one embodiment, a medical device includes a plurality of discrete frame segments coupled with at least one ring member to form a frame structure. Each discrete frame segment includes an expanding leg, a collapsing leg and a hub extension. A tissue growth member is coupled with the plurality of discrete frame segments to define a substantially convex surface and a substantially concave surface.
Abstract:
The present invention is directed to various embodiments of medical devices and methods for occluding a fallopian tube for contraception and permanent sterilization. In one embodiment, the medical device includes an outer member, an inner member and a tissue growth member. The outer member includes an outer surface and an inner surface, wherein the inner surface defines a bore in the outer member. The inner member is configured to be positioned within the bore of the outer member. The tissue growth member is attached to the outer surface of the outer member and is configured to induce tissue growth thereto. With this arrangement, the medical device can be implanted within the fallopian tube and serve as a permanent occluding device therein. If desired, the medical device can be partially removed from the fallopian tube to restore the ability for conception.
Abstract:
Medical devices, systems and methods for treating valve prolapse in, for example, the mitral valve. The medical device is employed by delivering the device percutaneously and lodging the device adjacently above the valve. With this arrangement, the device provides a back-stop to prevent valve prolapse and, thus, prevent valve regurgitation.
Abstract:
The present invention provides devices, systems and methods for closing a paravalvular leak. In accordance with one embodiment, a medical device includes at least one multicellular frame member (112) configured to be implanted at a paravalvular leak. The medical device further includes at least one tissue in-growth member (116) associated with the frame member, the tissue in-growth member being configured to promote tissue growth and permanently maintain the frame member at the leak. The frame member may be self expanding device formed, for example, of a shape-memory alloy. The tissue in-growth member may be formed from a polymer material. In one particular embodiment, the frame member may be a substantially tubular structure and the tissue in-growth member may be disposed within an interior space defined by the tubular structure. In another embodiment, the frame ember may be a substantially flat or planar structure.