Abstract:
The present invention is directed to various embodiments of medical devices and methods for occluding a fallopian tube for contraception and permanent sterilization. In one embodiment, the medical device includes an outer member, an inner member and a tissue growth member. The outer member includes an outer surface and an inner surface, wherein the inner surface defines a bore in the outer member. The inner member is configured to be positioned within the bore of the outer member. The tissue growth member is attached to the outer surface of the outer member and is configured to induce tissue growth thereto. With this arrangement, the medical device can be implanted within the fallopian tube and serve as a permanent occluding device therein. If desired, the medical device can be partially removed from the fallopian tube to restore the ability for conception.
Abstract:
A medical system for treating an internal tissue opening can include a closure device and associated delivery device. The closure device can include a body portion operatively associated with a first anchor and a second anchor. The body portion can include a plurality of segments defining a multi-cellular structure. The closure device can be configured to apply lateral force to tissue of the internal tissue opening to bring tissue together. The closure device can have a substantially flat aspect, and have a depth thickness that is substantially greater than the thickness or width of a majority of the members forming the closure device to reduce out of plane bending. The closure device can also include a member adapted to induce tissue growth.
Abstract:
A medical system for treating an internal tissue opening can include a closure device and associated delivery device. The closure device can include a multi-cellular body portion operatively associated with a first anchor and a second anchor. The closure device can be configured to apply lateral force to tissue of the internal tissue opening to bring tissue together. The closure device can have a substantially flat aspect, and have a depth that is substantially greater than the thickness of a majority of the members forming the closure device. The closure device can also include a member for promoting tissue growth. The delivery device can include an actuating assembly configured to partially deploy the closure device by a first movement, and deploy a second portion of the closure device by a second movement. The delivery device can also include a release assembly to selectively release or disconnect the closure device from the delivery device.
Abstract:
The present invention is directed to a medical device for occluding a fallopian tube for contraception and sterilization. The medical device includes an outer member (12), an inner member (14) and a tissue growth member (16). The outer member includes an outer surface (20) and an inner surface (22), wherein the inner surface defines a bore (24) in the outer member. The inner member is configured to be positioned within the bore of the outer member. The tissue growth member is attached to the outer surface of the outer member and is configured to induce tissue growth thereto. With this arrangement, the medical device can be implanted within the fallopian tube and serve as an occluding device therein. If desired, the medical device can be partially removed from the fallopian tube to restore the ability for conception.
Abstract:
A medical device for reducing the size of a Patent Foramen Ovale is disclosed. The medical device can include a first electrode (116a), a second electrode (111a), and at least one sensor mounted to at least one of the first electrode or the second electrode, the at least one sensor adapted to sense at least one operating parameter of the medical device or the patient to facilitate closure of the Patent Foramen Ovale. The medical device can also include a delivery shaft (120c) coupled to the first electrode, wherein the delivery shaft includes an indicia for determining the position of the first electrode relative to the second electrode. A method for determining a characteristic of an internal tissue opening is also disclosed. The method can include the steps of introducing a detectable fluid in the right atrium of a heart and then detecting the location of the detectable fluid in the heart.
Abstract:
A medical device for guiding through anatomy, such as a catheter or guidewire, with a tubular body that has been slotted to enhance bending flexibility, and a polymer liner with an anti-collapsing structure, and a method of making a medical device with a kink-resistant corrugated tubular member and an anti-collapsing structure. Anti collapsing structures may be helical or annular, and may be wire, such as ribbon wire, grooves in the liner, corrugations, or a braid. Liners may be bonded to the anticollapsing structure, or may have two layers, with the anti-collapsing structure between the layers. Corrugations may be formed between sections of the anti-collapsing 'structure with heat, pressure, stretching, compression, a mold, or a combination thereof, and may extend inward or outward. Shape or wall thickness may vary along the length to provide a varying bending stiffness. Slots may be formed in groups of two, three, or more, and adjacent groups may be rotated about the axis forming a helical pattern.
Abstract:
Several embodiments are set forth of devices, systems and methods for modifying an atrial appendage such as a left atrial appendage (LAA). In one embodiment, a device includes a body (300, 320) that is collapsible and self -expanding. The body includes a textured surface with protruding portions (304, 322) and recessed portions (306,326). The body may be formed of a reticulated foam material and may exhibit a substantially spherical geometry or a truncated spherical geometry. The body may be substantially hollow. In one embodiment, portions of the textured surface may be metalized or have a coating placed thereon to enhance frictional engagement of the body with the atrial appendage wall. In another embodiment (360), a mesh bag (362) is disposed within an LAA and one or more self- expanding bodies (364) are disposed within the mesh bag. The mesh bag is then secured to retain the self -expanding bodies within the bag and the LAA.
Abstract:
A medical device for reducing the size of a Patent Foramen Ovale is disclosed. The medical device can include a first electrode, a second electrode, and at least one sensor mounted to at least one of the first electrode or the second electrode, the at least one sensor adapted to sense at least one operating parameter of the medical device or the patient to facilitate closure of the Patent Foramen Ovale. The medical device can also include a delivery shaft coupled to the first electrode, wherein the delivery shaft includes an indicia for determining the position of the first electrode relative to the second electrode. A method for determining a characteristic of an internal tissue opening is also disclosed. The method can include the steps of introducing a detectable fluid in the right atrium of a heart and then detecting the location of the detectable fluid in the heart.
Abstract:
A medical device for guiding through anatomy, such as a catheter or guidewire, with a tubular body that has been slotted to enhance bending flexibility, and a polymer liner with an anti-collapsing structure, and a method of making a medical device with a kink-resistant corrugated tubular member and an anti-collapsing structure. Anti collapsing structures may be helical or annular, and may be wire, such as ribbon wire, grooves in the liner, corrugations, or a braid. Liners may be bonded to the anticollapsing structure, or may have two layers, with the anti-collapsing structure between the layers. Corrugations may be formed between sections of the anti-collapsing 'structure with heat, pressure, stretching, compression, a mold, or a combination thereof, and may extend inward or outward. Shape or wall thickness may vary along the length to provide a varying bending stiffness. Slots may be formed in groups of two, three, or more, and adjacent groups may be rotated about the axis forming a helical pattern.
Abstract:
A medical system for treating an internal tissue opening can include a closure device and associated delivery device. The closure device can include a body portion operatively associated with a first anchor and a second anchor. The body portion can include a plurality of segments defining a multi-cellular structure. The closure device can be configured to apply lateral force to tissue of the internal tissue opening to bring tissue together. The closure device can have a substantially flat aspect, and have a depth thickness that is substantially greater than the thickness or width of a majority of the members forming the closure device to reduce out of plane bending. The closure device can also include a member adapted to induce tissue growth.