Abstract:
The invention relates to a method and to a system for avoiding freezing of at least one component of a cryogenic fluid inside a cryogenic heat exchanger by measuring a physical property allowing to indirectly determine the risk of freezing of the least one component of the cryogenic fluid inside the cryogenic heat exchanger.
Abstract:
A method for providing pressurized gas from a source of liquefied gas (4) to a consumer (5), wherein vaporized gas is supplied via a first line (15) from the source of liquefied gas (4) to a compressor arrangement (100) for pressurizing the vaporized gas, the compressor arrangement (100) comprising a first screw compressor module (1) and a second screw compressor module, wherein the first screw compressor module (1) is arranged in parallel to the second screw compressor module (2), the second screw compressor module (2) being arranged at a bypass-line (25), the bypass-line (25) branching off the first line (15) upstream of the second screw compressor module (2).
Abstract:
System for vaporizing a cryogenic gas-liquid mixture comprising a cryogenic gas-liquid mixture supply line, a vaporizer, spraying means for spraying a cryogenic liquid into the vaporized cryogenic gas-liquid mixture at the outlet of the vaporizer, a mist separator for separating droplets of cryogenic liquid from the vaporized cryogenic gas-liquid mixture and a compressor. The temperature at the inlet of the compressor is controlled with a control valve located on a cryogenic liquid supply line.
Abstract:
Un module (12) pour dispositif de remplissage sous haute pression selon l'invention comporte : - au moins une vanne d'isolation (24), - au moins une nourrice (26, 26') avec une entrée et une sortie, - une conduite (42) pour alimenter l'entrée de la nourrice (26, 26') avec la vanne d'isolation (24), - un tuyau flexible (14) en aval de la sortie de la nourrice (26), et - un cadre (22) métallique sur lequel sont montées l'au moins une vanne d'isolation (24) et l'au moins une nourrice (26, 26'). Dispositif de remplissage avec un tel module. Procédé de fabrication d'un dispositif de remplissage avec un tel module.
Abstract:
A system (100) for liquefying a gas comprises a liquid piston gas multistage compressor (2). It can be arranged on-board a liquefied gas carrier for recycling boil-off gas. Such system may be easily adapted or controlled for matching wide requirement ranges for variations of the liquefaction capacity. In addition, at least part of the liquid piston gas multistage compressor can be shared between the gas liquefying system and an extra gas-fed device. Such extra gas-fed device may be in particular a gas-fuelled or hybrid fuel propulsion engine of the vessel.
Abstract:
An apparatus for supplying natural gas fuel to an ocean-going tanker for the transport of liquefied natural gas (LNG) is disclosed. The apparatus comprises a first line with a compressor (12) having an inlet communicating with the ullage space (4) of at least one LNG storage tank (2) and an outlet communicating with a conduit leading from the compressor (12) to at least one engine (38), and a second line with a forcing vaporiser (24) having an inlet communicating with a liquid storage region (6) of the said tank (2), the second line being connected to the first line downstream the compressor (12) and upstream the engine (38).
Abstract:
Ce procédé de délivrance de liquide cryogénique comporte les étapes suivantes : - raccordement de manière étanche d'un réservoir (2) à remplir à une cuve de stockage, - délivrance de liquide cryogénique vers le réservoir (2) et détermination, d'une part, du flux de liquide en cours de délivrance et de la quantité de liquide délivré et, d'autre part, de la pression régnant dans le réservoir (2), - arrêt de la délivrance du liquide lorsque la pression dépasse un premier seuil prédéterminé ou bien lorsque le flux de liquide passe en dessous d'un second seuil prédéterminé, - dégazage du réservoir (2) après arrêt de la délivrance en déterminant la quantité de gaz retirée du réservoir (2) lors du dégazage, et - détermination s'il y a lieu de délivrer à nouveau du liquide ou non en fonction de la quantité de gaz retiré lors du dégazage.
Abstract:
A cryogenic liquid expansion turbine has a turbine wheel (6) mounted on a rotary shaft (8), at least one radial inlet (12) for cryogenic liquid to be expanded in the expansion turbine (20, 22) for the rotary shaft, and a dry gas sealing means (30) at a position along the rotary shaft (8) between the turbine wheel (6) and the bearings (20 and 22). There is a thermal barrier member (70) between the turbine wheel (6) and the dry gas sealing means (30), a gas chamber (76) on the dry gas sealing means (30)- side of the thermal barrier member (70), and an inlet (78) for cryogenic gas to the said gas chamber (76).
Abstract:
A machine for recovering power from a flow of compressed gas, for example, natural gas comprises, firstly, a turbo-expander 2 having a turbo-expander wheel 6 and, secondly, a generator 4 having a rotor 10 able to be driven by the turbo-expander wheel 6 and a stator 12 about the rotor 10. The turbo- expander 2 and the generator 4 are housed in a length of pipe 14. The turbo- expander wheel 6 has an obverse side 7 facing the generator 4. There is a flow passage 42 for the flow of expanded gas that places the obverse side 7 of the wheel 6 in gas flow communication with the outer surface of the stator 12. This outer surface typically carries fins 44 to facilitate cooling of the stator 12 by expanded gas from the turbo-expander 2.
Abstract:
According to the present invention, a method for cryogenic separation of air using an air separation unit (100) comprising a rectification column (5) is provided. Feed air is compressed, cooled and rectified in the rectification column (5) obtaining an overhead gas, wherein a part of the overhead gas of the rectification column (5) is condensed using fluid withdrawn from the rectification column (5), wherein the condensed overhead gas is used at least in part as a liquid reflux to the rectification column (5), wherein a first part of the fluid which is used for cooling the overhead gas of the rectification column (5) is, after its use for cooling, compressed and reintroduced into the rectification column (5), and wherein a second part of the fluid which is used for cooling the overhead gas of the rectification column (5) is, after its use for cooling, expanded and withdrawn from the air separation unit (100). According to the present invention, for compressing the first part of the fluid which is used for cooling the overhead gas of the rectification column (5) a compressor (6) which is coupled to an electric motor (M) via a first gearbox (61) is used, for expanding the second part of the fluid which is used for cooling the overhead gas of the rectification column (5) an expansion turbine (7) which is coupled to an electric generator (G) via a second gearbox (71) is used, and the first gearbox (61) and the second gearbox (71) are identically designed. A corresponding air separation unit (100) is also part of the present invention.