Abstract:
Apparatuses and methods for controlling the motion of a propeller blade are disclosed. In one embodiment, the apparatus can include a first motor that rotates a propeller about a first axis with a first shaft. A first signal transmission portion, fixed relative to the first motor, can transmit signals to a second signal transmission portion that rotates with the first shaft. A second motor can be carried by the first shaft and can receive signals from the second signal transmission portion. The second motor can drive blades of the propeller about a second axis generally transverse to the first axis via a second shaft to vary the pitch of the blades.
Abstract:
Methods and systems for starting propeller driven aircraft and other devices are disclosed. A system in accordance with one embodiment of the invention includes a removable fixture that is coupled to the propeller and has at least one portion exposed to a flowstream to rotate the propeller during engine start-up. The fixture is configured to separate from the propeller after the engine begins to turn over (e.g., after the engine starts and/or rotates above a threshold rate). Accordingly, the system can include a releasable link between the fixture and the propeller.
Abstract:
Systems and methods for recovering unmanned aircraft and controlling post-recovery motion of the aircraft are disclosed herein. An aircraft recovery system for handling an unmanned aircraft in accordance with one embodiment of the disclosure includes a base portion (102) and an elongated aircraft capture member (104) having a first end movably coupled (106) to the base portion and a second, free end opposite the first end. The aircraft capture member includes a first portion (110) and a second portion (112) at a distal end of the first portion and positioned to intercept an unmanned aircraft in flight. The first and/or second portions are generally flexible. The system further includes an energy capture and dissipation assembly (108) operably coupled to the aircraft capture member and positioned to receive at least a portion of the landing forces from the aircraft.
Abstract:
Frangible fasteners and associated systems and methods are disclosed herein. In one embodiment, for example, an unmanned aircraft can include a fuselage portion, a wing portion, and a winglet carried by the wing portion. The aircraft can also include at least one frangible fastener coupling the winglet to the wing portion. The fastener is coupled to only partially release the winglet from the wing portion when a force on the winglet exceeds a threshold value.
Abstract:
Frangible fasteners and associated systems and methods are disclosed herein. In one embodiment, for example, an unmanned aircraft can include a fuselage portion, a wing portion, and a winglet carried by the wing portion. The aircraft can also include at least one frangible fastener coupling the winglet to the wing portion. The fastener is coupled to only partially release the winglet from the wing portion when a force on the winglet exceeds a threshold value.
Abstract:
Method and systems for starting propeller driven aircraft and other devices. A system in accordance with one embodiment of the invention includes a removable fixture (130) that is coupled to the propeller (120) and has at least one portion (131a) exposed to a flowstream to rotate the propeller during engine start-up. The fixture is configured to separate from the propeller after the engine (110) begins to turn over (e.g., after the engine starts and/or rotates above a threshold rate). Accordingly, the system can include a releasable link (132) between the fixture and the propeller.
Abstract:
Apparatuses and methods for controlling the motion of a propeller blade are disclosed. In one embodiment, the apparatus can include a first motor that rotates a propeller about a first axis with a first shaft. A first signal transmission portion, fixed relative to the first motor, can transmit signals to a second signal transmission portion that rotates with the first shaft. A second motor can be carried by the first shaft and can receive signals from the second signal transmission portion. The second motor can drive blades of the propeller about a second axis generally transverse to the first axis via a second shaft to vary the pitch of the blades.