摘要:
Apparatus for determining the pulse width of ultra-short light pulses of an input repetitive light pulse signal comprises a two-photon absorption. detector (2) in the form of a microcavity (3) having an active region (4) located between top and bottom distributed Bragg reflectors (5,6). An optical fibre cable 16 directs the input light pulse signal combined with a reference repetitive light pulse signal normal to an incident surface (8) of the detector (2). The input light pulse signal is split in a polarisation light splitter (19) to form the reference light pulse signal which is passed through a delay line (23) to a polarisation light combiner (20) to be combined with the input light pulse signal, and directed at the incident surface (8) by the optical fibre cable (16). The delay line (23) is operated for alternately bringing the respective light pulses of the input and reference light pulse signals into and out of phase with each other to produce a pulsed photocurrent in the microcavity (3). A monitoring circuit (14) monitors the pulsed photocurrent, and the pulse width of the light pulses is determined as the full width half maximum of the pulsed photocurrent trace. By varying the angle of incidence at which the input and reference light pulse signals are incident on the incident surface (8), the apparatus is tuneable to input light pulse signals of different wavelengths within a predetermined range of wavelengths.
摘要:
A heterostructure self-pulsating laser device (1) comprising an active layer (5) with first and second cladding layers (6, 7) on respective opposite sides of the active layer (5) is grown on an n-substrate (2) of indium phosphide, the second cladding layer (7) being grown on the substrate (2), the active layer (5) being grown on the second cladding layer (7), and the first cladding layer (6) being grown on the active layer (5). A current blocking layer (12) is formed in the first cladding layer (6) and divides the first cladding layer (6) to form a distal cladding layer (15) and a proximal cladding layer (16) adjacent the active layer (5). A channel (14) defined by the current blocking layer (12) confines the current in the first cladding layer (6) and determines the width of the active light generating area of the active layer (5). The first and second cladding layers (6, 7) and the current blocking layer (12) are of grown doped indium phosphide. The first cladding layer (6) is doped to be a p-type layer and the second cladding layer (7) and the current blocking layer (12) are doped to be of n-type. The level of dopant in the current blocking layer (12) is approximately ten times greater than the level of doping in the first cladding layer (6) in order to establish an effective refractive index step in the lateral direction of the active layer (5) in order to confine light generated in the active layer (5). A continuous wave operating laser device is also described.
摘要:
Apparatus for determining the pulse width of ultra-short light pulses of an input repetitive light pulse signal comprises a two-photon absorption. detector (2) in the form of a microcavity (3) having an active region (4) located between top and bottom distributed Bragg reflectors (5,6). An optical fibre cable 16 directs the input light pulse signal combined with a reference repetitive light pulse signal normal to an incident surface (8) of the detector (2). The input light pulse signal is split in a polarisation light splitter (19) to form the reference light pulse signal which is passed through a delay line (23) to a polarisation light combiner (20) to be combined with the input light pulse signal, and directed at the incident surface (8) by the optical fibre cable (16). The delay line (23) is operated for alternately bringing the respective light pulses of the input and reference light pulse signals into and out of phase with each other to produce a pulsed photocurrent in the microcavity (3). A monitoring circuit (14) monitors the pulsed photocurrent, and the pulse width of the light pulses is determined as the full width half maximum of the pulsed photocurrent trace. By varying the angle of incidence at which the input and reference light pulse signals are incident on the incident surface (8), the apparatus is tuneable to input light pulse signals of different wavelengths within a predetermined range of wavelengths.