Abstract:
Methods and systems for detecting defects on a reticle are provided. One method includes printing a single die reticle in first areas of a wafer using different values of a parameter of a lithography process and at least one second area using a nominal value of the parameter. The method also includes acquiring first images of the first areas and second image(s) of the at least one second area. In addition, the method includes separately comparing the first images acquired for different first areas to at least one of the second image(s). The method further includes detecting defects on the reticle based on first portions of the first images in which variations in the first images compared to the at least one second image are greater than second portions of the first images and the first portions that are common to two or more of the first images.
Abstract:
Methods and systems for detecting defects on a reticle are provided. One method includes printing a single die reticle in first areas of a wafer using different values of a parameter of a lithography process and at least one second area using a nominal value of the parameter. The method also includes acquiring first images of the first areas and second image(s) of the at least one second area. In addition, the method includes separately comparing the first images acquired for different first areas to at least one of the second image(s). The method further includes detecting defects on the reticle based on first portions of the first images in which variations in the first images compared to the at least one second image are greater than second portions of the first images and the first portions that are common to two or more of the first images.
Abstract:
A method of predicting earth stresses in response to changes in a hydrocarbon-bearing reservoir within a geomechanical system includes establishing physical boundaries for the geomechanical system, acquiring logging data from wells drilled, and acquiring seismic data for one or more rock layers. The well and seismic data are automatically converted into a three-dimensional digital representation of one or more rock layers within the geomechanical system, thereby creating data points defining a three-dimensional geological structure. The method also includes (a) applying the data points from the geological structure to derive a finite element-based geomechanical model, and (b) initializing a geostatic condition in the geomechanical model, and then running a geomechanics simulation in order to determine changes in earth stresses associated with changes in pore pressure or other reservoir characteristics within the one or more rock layers.
Abstract:
A method for controlling fluid injection parameters to improve well interactions and control hydrofracture geometries is provided. The method incorporates a systematic, transient analysis process for determining the formation effective displacement, stress and excess pore pressure field quantities at any depth within a stratified subterranean formation resulting from the subsurface injection of pressurized fluids.
Abstract:
A method for controlling fluid injection parameters to improve well interactions and control hydrofracture geometries is provided. The method incorporates a systematic, transient analysis process for determining the formation effective displacement, stress and excess pore pressure field quantities at any depth within a stratified subterranean formation resulting from the subsurface injection of pressurized fluids.
Abstract:
A method for controlling fluid injection parameters to improve well interactions and control hydrofracture geometries is provided. The method incorporates a systematic, transient analysis process for determining the formation effective displacement, stress and excess pore pressure field quantities at any depth within a stratified subterranean formation resulting from the subsurface injection of pressurized fluids.
Abstract:
Top and bottom support systems are provided for supporting cylindrical containers on-board marine vessels and in storage facilities, particularly vertical cylindrical containers in cryogenic temperature service. An exemplary top support has a plurality of support arms connected between the container's top head and the marine vessel. The plurality of support arms are adapted to restrain rotation of the container about its vertical axis and are further adapted to resist overturning moments caused by motions of the marine vessel. An exemplary bottom support according to this invention is structurally integrated with the bottom head(s) of the container(s) being supported. The integration is accomplished in such a way that stresses from the container(s), including gravity-induced, inertial-induced, and vibration-induced stresses, are transmitted directly to the support system.
Abstract:
Embodiments of the invention provide a digital profile system for a user and a method for capturing, storing, and updating information about a user's attributes in a personal genome database. The system interacts with a third-party application which provides an assessment tool for execution by the user. The system includes the personal genome database, a server processor which executes computer-readable instructions of an advanced competency model, a unique pass code system, and at least one privacy filter, and a user processor which executes computer-readable instructions of a client manager.
Abstract:
Systems and methods for monitoring time-varying classification performance are disclosed. A method may include, but is not limited to: receiving one or more signals indicative of one or more properties of one or more samples from one or more scanning inspection tools; determining populations of one or more defect types for the one or more samples according an application of one or more classification rules to the one or more signals received from the one or more scanning inspection tools; determining populations of the one or more defect types for the one or more samples using one or more high-resolution inspection tools; and computing one or more correlations between populations of one or more defect types for one or more samples determined from application of one or more classification rules applied to one or more signals received from the one or more scanning inspection tools and populations of the one or more defect types for the one or more samples determined using the one or more high-resolution inspection tools.
Abstract:
Methods for injecting a fluid into a subsurface formation are provided. Each of the methods includes the obtaining data, including formation parameters and operational variables, related to an injection well. A regime of operation for the injection well is determined. The regime of operation is determined using a heuristic model. In one aspect, one or more operational variables, including completion design, reservoir development procedures, and/or injection procedures, is designed based at least in part on the determined regime of operation. Water or other fluid may then be injected into the subsurface formation. The step of determining the regime of operation for the injection well may use a full physics computational simulation to construct a mathematical model that can estimate the operating regime for the water injection well. Alternatively or in addition, field data may be used.