Abstract:
A medical system includes a medical device and a controller. The medical device is controlled according to a control protocol. The controller is configured to receive a measured data set containing a current value at a current time and past values at past times of a physiologic signal measured on a recipient, calculate a difference signal at the current time based on the measured data set, and predict a difference value using the difference signal and a prediction algorithm. The difference value is a difference between a predicted future value of the physiologic signal at a future time and the current value. The controller is further configured to calculate the predicted future value based on the difference value and the current value and update the control protocol according to the predicted future value.
Abstract:
Systems and methods are provided for registering images. The systems and methods perform operations comprising: receiving, at a first time point during a given radiation session, a first imaging slice comprising an object, the first imaging slice corresponding to a first plane; accessing, at the first time point during the given radiation session, a composite imaging slice corresponding to the first plane, the composite imaging slice being generated using a plurality of imaging slices obtained prior to the first time point; spatially registering the first imaging slice and the composite imaging slice; determining movement of the object using the spatially registered first imaging slice and the composite imaging slice; and generating an updated therapy protocol to control delivery of a therapy beam based on the determined movement.
Abstract:
Systems and methods are provided for target tracking using a quality indicator during radiation therapy treatment. An exemplary method may include determining a localization result indicating a location of a target in a plurality of images representative of images acquired in a radiation therapy treatment session. The method may also include determining a quality indicator for each localization result. The method may further include extracting one or more features from each localization result. In addition, the method may include training the classifier using the localization result and one or more of the extracted features.
Abstract:
Described is a method of determining whether repair or replacement of an electron gun of a radiotherapy device should be scheduled. The radiotherapy device comprises a linear accelerator and is configured to provide therapeutic radiation to a patient. The radiotherapy device comprises a vacuum tube comprising the electron gun, a waveguide configured to accelerate electrons emitted by the electron gun toward a target to produce said radiation. The radiotherapy device comprises also comprises a current sensor, the current sensor being configured to provide signals indicative of current supplied to the electron gun. The method comprises receiving a current value, processing the current value, and based on the processing of the current value, determining whether repair or replacement of the electron gun should be scheduled. Processing the current value comprises determining whether the current value meets at least one threshold criterion, and determining whether the current value has changed by at least a threshold amount in a particular time period.
Abstract:
The present disclosure includes procedures to automate quality assurance testing for radiotherapy equipment that includes MR-Linac devices that are agnostic as to the manufacturer and vendor of the equipment. The present disclosure includes a process for performing a validation procedure for the linear accelerator of the MR-Linac device. The present disclosure includes a process for analyzing quality of the images produced by the MR imaging device of the MR-Linac device. The present disclosure includes a process for combining performance of a validation procedure for the linear accelerator of the MR-Linac device and the analysis of the quality of the images produced by the MR imaging device of the MR-Linac device.
Abstract:
Systems and methods for managing motions of an anatomical region of interest of a patient during image-guided radiotherapy are disclosed. An exemplary system may include an image acquisition device, a radiotherapy device, and a processor device. The processor device may be configured to determine a primary plane of motion of the anatomical region of interest and determine a plurality of 2D slices parallel to the primary plane. The plurality of 2D slices may define a 3D volume substantially enclosing the anatomical region of interest. The processor device may also be configured to control the image acquisition device to acquire a plurality of 2D images based on the plurality of 2D slices and determine a motion of the anatomical region of interest based on at least a subset of the acquired plurality of 2D images. The processor device may be further configured to control radiation delivery based on the determined motion.
Abstract:
Systems and methods for generating a radiotherapy treatment plan using information about gantry angle-indexed dose (GAID) variation are discussed. An exemplary system can include an interface to receive a beam model for use in the radiation machine, and a processor that can determine, for the radiation machine, a GAID variation represented by a plurality of radiation doses at different gantry angles. The processor can determine a radiation treatment plan for the patient using the beam model and the GAID variation.
Abstract:
Systems and methods are provided for performing operations comprising: generating a radiotherapy treatment plan for treating an ablation volume comprising a myocardial scar based on a first image of a patient that is generated using contrast-enhanced magnetic resonance (MR) imaging information; identifying, based on the first image of the patient, the ablation volume comprising the myocardial scar in a second image of the patient that is generated using MR imaging information without contrast; adjusting the radiotherapy treatment plan based on the ablation volume identified in the second image of the patient; acquiring a cine image of the patient during delivery of a radiotherapy treatment fraction by a radiotherapy treatment device based on the adjusted radiotherapy treatment plan; and comparing the cine image to the second image of the patient to control delivery of a radiotherapy beam by the radiotherapy treatment device.
Abstract:
Systems and methods for managing motions of an anatomical region of interest of a patient during image-guided radiotherapy are disclosed. An exemplary system may include an image acquisition device, a radiotherapy device, and a processor device. The processor device may be configured to control the image acquisition device to acquire at least one 2D image. Each 2D image may include a cross-sectional image of the anatomical region of interest. The processor device may also be configured to perform automatic contouring in each 2D image to extract a set of contour elements segmenting the cross-sectional image of the anatomical region of interest in that 2D image. The processor device may be further configured to match the set of contour elements to a 3D surface image of the anatomical region of interest to determine a motion of the anatomical region of interest and to control radiation delivery based on the determined motion.
Abstract:
Systems and methods are provided for registering images. The systems and methods perform operations comprising: receiving, at a first time point in a given radiation session, a first imaging slice corresponding to a first plane; encoding the first imaging slice to a lower dimensional representation; applying a trained machine learning model to the encoded first imaging slice to estimate an encoded version of a second imaging slice corresponding to a second plane at the first time point to provide a pair of imaging slices for the first time point; simultaneously spatially registering the pair of imaging slices to a volumetric image, received prior to the given radiation session, comprising a time-varying object to calculate displacement of the object; and generating an updated therapy protocol to control delivery of a therapy beam based on the calculated displacement of the object.