Abstract:
A particle beam range verification method includes acquiring at least one ultrasound image of target tissue that has been exposed to a particle beam, and obtaining range information for the particle beam from a change in ultrasound contrast due to destruction, by the particle beam, of microbubbles deposited in the target tissue. A particle treatment method includes delivering microbubbles to target tissue, and exposing the target tissue to a particle beam to cause damage to the target tissue, including damage caused by destruction of microbubbles by the particle beam. A microbubble-enhanced ultrasound imaging method includes acquiring an ultrasound image series of target tissue during at least one of wash-in of microbubbles to the target tissue and wash-out of the microbubbles from the target tissue, and deriving therefrom at least one of a wash-in rate and a wash-out rate indicating response of target tissue to particle treatment.
Abstract:
Systems and methods for managing motions of an anatomical region of interest of a patient during image-guided radiotherapy are disclosed. An exemplary system may include an image acquisition device, a radiotherapy device, and a processor device. The processor device may be configured to determine a primary plane of motion of the anatomical region of interest and determine a plurality of 2D slices parallel to the primary plane. The plurality of 2D slices may define a 3D volume substantially enclosing the anatomical region of interest. The processor device may also be configured to control the image acquisition device to acquire a plurality of 2D images based on the plurality of 2D slices and determine a motion of the anatomical region of interest based on at least a subset of the acquired plurality of 2D images. The processor device may be further configured to control radiation delivery based on the determined motion.
Abstract:
Methods, devices, and systems can be used to improve accuracy and precision of stereotactic radiosurgery. For example, this document provides methods and materials for using a fiducial marker device for stereotactic radiosurgery of ocular disorders. The fiducial marker device of the invention enables positional tracking of the target tissue during the stereotactic radiosurgery procedure despite occasional movement of the eye being subjected to stereotactic radiosurgery.
Abstract:
A radiation delivery system includes a multi-leaf collimator (MLC) that includes a housing, a plurality of leaves disposed within the housing, and an image sensor disposed within the housing at a position that is offset from a beam axis. The plurality of leaves are movable to define an aperture for the MLC, and the image sensor is directed toward the plurality of leaves. The image sensor is to generate an oblique-view image of the aperture. The radiation delivery system additionally includes a processing device to receive the oblique-view image, transform the oblique-view image into a top-view image having a reference coordinate space, and determine whether the aperture for the MLC corresponds to a specified aperture based on the top-view image.
Abstract:
To overcome the difficulties inherent in conventional proton therapy systems, new techniques are described herein for synchronizing the application of proton radiation with the periodic movement of a target area. In an embodiment, a method is provided that combines multiple rescans of a spot scanning proton beam while monitoring the periodic motion of the target area, and aligning the applications of the proton beam with parameters of the periodic motion. For example, the direction(s) and frequency of the periodic motion may be monitored, and the timing, dose rate, and/or scanning direction and spot sequence of the beam can be adjusted to align with phases in the periodic motion.
Abstract:
An ultrasonic diagnostic imaging system has a thin two dimensional array transducer probe which is taped or belted to a patient to image a target region during radiotherapy. The radiotherapy procedure is conducted based upon planning done based on images of the target region acquired prior to the procedure. The array transducer is operated by an ultrasound system to produce three dimensional images of the target region by electronic beam steering, either during or between fractions of the treatment procedure. The ultrasound images are used to adjust the treatment plan in response to any movement or displacement of the target anatomy during the treatment procedure.
Abstract:
A data processing method and device for correlating the position of a radiation beam with the position of a target to be irradiated and contained in a structure underlying a repetitive motion comprising a plurality of successive motion cycles, the method/device comprising/performing the following steps which are constituted to be executed by a computer: a) acquiring first external position data, second external position data and third external position data describing the position of at least one external feature of said structure, for one or more sections of at least one first motion cycle occurring during a first period of time, for one or more sections of at least one second motion cycle occurring during a second period of time, and for one or more sections of at least one third motion cycle occurring during said second period of time, respectively; b) acquiring first target position data and second target position data describing the position of said target for at least one of said sections of said at least one first motion cycle, and for said sections of said at least one second motion cycle, respectively; c) determining, based on said first external position data and said first target position data, correlation model data describing a positional correlation of said external position and said target position; d) determining, based on said correlation model data and said second external position data, second predicted target position data describing a predicted position of said target for one or more sections of said at least one second motion cycle; e) determining, based on said second target position data and said second predicted target position data, primary verification data describing whether the position of said target for said sections of said at least one second motion cycles is different from said predicted position; f) acquiring, in case said primary verification data indicates that the position of said target is not different from the predicted position of said target, auxiliary second target position data and auxiliary third target position data describing the position of said target for one or more sections of said at least one second motion cycle, and of said at least one third motion cycle, respectively; g) determining, based on said first and/or said second external position data, said auxiliary second target position data and said third external position data, third predicted target position data describing a predicted position of said target for said sections of said at least one third motion cycle; h) determining, based on said auxiliary third target position data and said third predicted target position data, secondary verification data describing whether the position of said target for said sections of said at least one third motion cycle is different from said predicted position.
Abstract:
A table with 6 degrees of freedom is regarded as essential in order to adjust the patient position to correct for positioning errors and the like. However, this imposes a significant cost, has a redundant axis in a conventional linac treatment system, and adds to the volume of the table. We disclose a way of dealing with rotation of the patient in an axis about which the source has a limited range of rotation, without needing a rotational adjustment of the table. An apparatus comprises a radiotherapy delivery apparatus having a radiation source adapted to emit a beam of radiation and to rotate around at least one axis that intersects with the beam, the rotation being confined to a limited range of rotation, an associated imaging device, and a control means controlling both the source and the imaging device, together with a treatment planning computer that accepts an image of a patient and parameters defining the machine capabilities, and creates a treatment plan based on both, wherein the source is capable of rotation in that axis through a range of at least x degrees, and a parameter is passed to the treatment planning computer defining the source's available range as x-e where e>0 , and the control means is adapted to detect the patient position using the imaging device, determine a rotation r of the patient around the axis relative to the image used by the treatment planning computer, and if r compensate for the rotation by offsetting the source by a rotation equal to r . The limited range of rotation is typically less than 360 degrees although this need not necessarily be the case. An example of the type of radiotherapy apparatus to which this invention is applicable is shown in our earlier patent application WO2005/041774, but it can equally be applied to other types.
Abstract:
Irradiation device for irradiating an irradiation object with heavy charged particles, comprising a support for the irradiation object, and an irradiation nozzle irradiating a charged particle beam towards the irradiation object, wherein the beam is deflected within the irradiation nozzle. The support for the irradiation object is moveable at least horizontally, and the irradiation nozzle is moveable at least vertically and rotatable around a nozzle swivel axis along which the particle beam enters into the irradiation nozzle.