Abstract:
A system includes a pressure exchanger (PX). The PX is coupled to a motor that controls an operating speed of the PX. The system further includes a first pressure gauge configured to generate first pressure data indicative of a pressure of a fluid of a condenser. A first controller is to generate a first control signal based on the first pressure data. The motor of the PX is configured to adjust the operating speed of the PX based on the first control signal. The system further includes a pump. The system further includes a fluid density sensor for generating fluid density data associated with a first output fluid of the PX. A second controller is to generate a second control signal based on at least the fluid density data. The pump is to adjust an operating speed of the pump based on the second control signal.
Abstract:
A system includes a hydraulic energy transfer system configured to exchange pressures between a first fluid and a second fluid, wherein the first fluid has a pressure higher than the second fluid. The hydraulic transfer system includes a cylindrical rotor configured to rotate circumferentially about a rotational axis and having a first end face and a second end face disposed opposite each other, a first end cover having a first surface that interfaces with the first end face of the cylindrical rotor, and a hybrid hydrodynamic-hydrostatic bearing system configured to resist axial displacement of the cylindrical rotor.
Abstract:
A method for using a pressure exchanger to reduce flow as a choke that includes receiving a flow of high pressure fluid at the pressure exchanger, filling a chamber of the pressure exchanger with high pressure fluid, and discharging a portion of the fluid in the chamber at a low pressure.
Abstract:
A system includes a hydraulic fracturing system (10) including a hydraulic energy transfer system (12) configured to exchange pressures between a first fluid and a second fluid. The hydraulic fracturing system (10) also includes a common manifold (11) including one or more high pressure manifolds (100, 104) and one or more low pressure manifolds (102, 106). The one or more high pressure manifolds and the one or more low pressure manifolds are coupled to the hydraulic energy transfer system (12).
Abstract:
A system including a rotary isobaric pressure exchanger (IPX) configured to exchange pressures between a first fluid and a second fluid, and a motor system coupled to the hydraulic energy transfer system and configured to power the hydraulic energy transfer system.
Abstract:
A system includes an integrated manifold system including multiple isobaric pressure exchangers (IPXs) that each includes a low-pressure first fluid inlet, a high-pressure second fluid inlet, a high-pressure first fluid outlet, and a low-pressure second fluid outlet. The integrated manifold system includes a low-pressure first fluid manifold coupled to each of the low-pressure first fluid inlets and configured to provide low-pressure first fluid to each of the low-pressure first fluid inlets, a high-pressure second fluid manifold coupled to each of the high-pressure second fluid inlets and configured to provide high-pressure second fluid to each of the high-pressure second fluid inlets, a high-pressure first fluid manifold coupled to each of the high-pressure first fluid outlets and configured to discharge high-pressure first fluid, and a low-pressure second fluid manifold coupled to each of the low-pressure second fluid outlets and configured to discharge low-pressure second fluid.
Abstract:
A system including a frac system with a hydraulic energy transfer system configured to exchange pressures between a first fluid and a second fluid, and a flush system configured remove particulate out of the hydraulic energy transfer system.
Abstract:
A method includes treating a process fluid of a gas processing system to create a treated process fluid and pressurizing the treated process fluid to a predetermined pressure using a pump of the gas processing system. The method also includes routing the treated process fluid at the predetermined pressure to a rotating assembly of the gas processing system and lubricating a bearing of the rotating assembly using the treated process fluid at the predetermined pressure.
Abstract:
Vehicles of embodiments of the invention are propelled by an electric motor (DC or AC motor) coupled to one of the vehicle's axles. The electric motor is powered by two or more electrical storage devices (e.g., batteries or battery banks or capacitors). The electrical storage devices are charged by alternators driven by a rotating flywheel. The flywheel is selectively coupled to a different one of the vehicle axles, such that movement of the vehicle (caused by the electric motor) causes the rotation of the flywheel.
Abstract:
A rotary energy recovery device (11) wherein a multi-channel cylindrical rotor (15) revolves with its end faces (32) juxtaposed in sealing relationship with end surfaces (33) of a pair of flanking end covers (19, 21), and wherein inlet and outlet fluid passageways (27, 29) are provided in each end cover. Fluid may be directed into the rotor channels (16) and allowed to exit therefrom in an axial direction parallel to the axis of the rotor; however, rotor revolution is self-driven as a result of the interior design of the channels (16) which extend axially through the rotor and are shaped so that fluid flow therethrough creates a torque.