Abstract:
A liquid dispensing device using a piezoelectric member in connection with an atomizing head and a passive metering method to supply liquid to the atomizing head. Preferably, the device is used to but not limited to dispensing of fragrances, insecticides or other aromatic solutions. The piezoelectric member docs not vibrate the nozzle plate through which the liquid is dispensed. The passive metering method relics only on surface tension forces within the supply passageway. The device can work with a wider range of liquid properties than existing piezoelectric devices of this type. The passive molding method is robust and consistent enabling larger and more varied liquid rcscivoirs because the reservoir height is not a factor in determining the performance of the device. The atomizing head functions with a widei range of liquids than atomizers whose nozzle plates arc directly excited.
Abstract:
Ingestible event marker systems that include an ingestible event marker (i.e., an IEM) and a personal signal receiver are provided. Embodiments of the IEM include an identifier, which may or may not be present in a physiologically acceptable carrier. The identifier is characterized by being activated upon contact with a target internal physiological site of a body, such as digestive tract internal target site. The personal signal receiver is configured to be associated with a physiological location, e.g., inside of or on the body, and to receive a signal the IEM. During use, the IEM broadcasts a signal which is received by the personal signal receiver.
Abstract:
The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.
Abstract:
An adjustable pylon to be used with a prosthetic limb. The adjustable pylon including a fixed tube having an attachment end to attach to the prosthetic limb, a receiving end, and a retainer bulkhead with a hole. The adjustable pylon including an adjustable tube having an attachment end to attach to the prosthetic limb, an insert end sized to fit inside the fixed tube, a threaded bulkhead with a threaded hole inside the adjustable tube. The adjustable pylon including a length adjustment screw including a threaded body and a centering post.
Abstract:
Resonant sensors, preferably having floating bilayer symmetry, and their methods of use is determining the presence, amount or binding kinetics of an analyte of interest in a test sample are disclosed. The test sample may be a liquid or gas.
Abstract:
The present invention allows the relatively easy production of binary and ternary compounds of metals, including noble metals. Embodiments of the invention allow, for the first time, the production of novel compositions of metal compounds, such as thick, stress-free single-phase binary and ternary compositions of metals, and porous compositions of such compounds. As such, the present invention allows for the production of metal compounds and/or compositions of matter thereof that have not before been possible, thereby providing for important new materials that find use in a multitude of different applications, including medical device and non-medical device applications.
Abstract:
The present invention allows the relatively easy production of binary and ternary compounds of metals, including noble metals. Embodiments of the invention allow, for the first time, the production of novel compositions of metal compounds, such as thick, stress-free single-phase binary and ternary compositions of metals, and porous compositions of such compounds. As such, the present invention allows for the production of metal compounds and/or compositions of matter thereof that have not before been possible, thereby providing for important new materials that find use in a multitude of different applications, including medical device and non-medical device applications.
Abstract:
An implantable integrated circuit structure comprising a conformal thin-film sealing layer for hermetically sealing circuitry layers is provided. Also disclosed are electrode structures, leads that include the same, implantable pulse generators that include the leads, as well as systems and kits having components thereof, other implantable devices utilizing the structures, and methods of making and using the subject structures.
Abstract:
Methods for evaluating motion of a cardiac tissue location, e.g., heart wall, are provided. In the subject methods, timing of a signal obtain from a strain gauge stably associated with the tissue location of interest is employed to evaluate movement of the cardiac tissue location. Also provided are systems, devices and related compositions for practicing the subject methods. The subject methods and devices find use in a variety of different applications, including cardiac resynchronization therapy.
Abstract:
The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.