Abstract:
The present disclosure relates to a modular fiber laser system operative to controllably guide a beam which is launched from a feeding fiber into a process fiber so that the high-aperture component is coupled and guided in cladding of the process fiber, and a low-aperture component is coupled into the core of the fiber. The laser system further has a reflective element configured with light-reflecting and light-transmitting portions. The high-aperture component at least partially decouples from the cladding into the core so that the core radiates the high-aperture and low-aperture components. The high-aperture component is incident upon the light-reflecting portion and backreflected into the process fiber so that a sensor array, which is located between the feeding and process fibers, detects the reflected light. The laser system further includes an adjustment system operatively connected to the sensor array and configured to displace the fibers relative to one another to an alignment position after the sensor array detects a maximum signal of the reflected high-aperture component.
Abstract:
The present invention is a method and system for reducing contamination in the resulting plasma of a weld produced by a fiber laser. The invention establishes the fiber laser in an optimal configuration for applying a high density beam to a weld material that eliminates spectral interference. The beam is applied in a narrow bandwidth of 1064 nm +/- 0.5 nm in one operative condition using an inert shielding gas, preferably argon, in a cross-flow or controlled environment around the welding region to prevent contamination of the plasma forming in the weld region. The method is optimized by determining and avoiding the emission spectrum for the fiber laser and the cover gas or gasses as well as any particular excitation spectra for the weld material. The system can utilize a single laser input, or can utilize multiple lasers joined by coupling means and utilizing a switch to select one or more of the fiber lasers.
Abstract:
Optical fiber apparatus having a wavelength of operation, that comprises an optical fiber including a core comprising an active material for providing light having the operating wavelength responsive to the optical apparatus receiving pump optical energy having a pump wavelength; a cladding disposed about the core; at least one region spaced from the core; and wherein the optical fiber is configured and arranged such that at the wavelength of operation the optical fiber can propagate a plurality of modes and wherein the optical fiber comprises a fundamental mode that is primarily a mode of the core and at least one higher order mode (HOM) that is a mixed mode of a selected mode of the core and of a selected mode of the at least one region.
Abstract:
A clad absorber unit is provided on a passive fiber of a high power fiber laser system and operative to trap and remove modes propagating along the waveguide clad of the fiber. The mode absorber is configured with such an optimal length that the clad light may be removed in a localized manner, substantially uniformly removed over the entire length thereof. The absorber removing clad light in a unformed fashion includes a host material impregnated with diffusers.
Abstract:
A high power fiber laser system emitting a substantially diffraction limited beam with a Gaussian intensity profile includes a single mode ("SM") neodymium fiber pump source outputting a SM pump light; a seed laser operative to emit a SM signal light at a wavelength greater than that of the pump light; a SM DWM receiving and multiplexing the SM pump and signal lights. The disclosed system further includes a booster fiber amplifier which is confiugred with a frustoconically-shaped ytterbium ("Yb") doped core receiving the pump and signal lights and configured with a small diameter input end which supports only a SM and a large diameter output end which is capable of supporting the SM and high order modes (:HOM"). The booster further has a cladding surrounding and coextending with the core, the core being configured for having intensity profiles of respective SMs of pump and signal lights overlap one another so that an overlap integral substantially equals to one (1) along an entire length of the core. The SM of the light signal extracts substantially the entire energy from the pump mode leaving the HOMs without amplification necessary to affect a quality of the diffraction limited beam of the system in a MW peak power range and hundreds of watt average power range.
Abstract translation:发射具有高斯强度分布的基本衍射受限束的高功率光纤激光器系统包括输出SM泵浦光的单模(“SM”)钕光纤泵浦源; 种子激光器,其以大于泵浦光的波长发射SM信号光; SM DWM接收和复用SM泵和信号灯。 所公开的系统还包括一个增强光纤放大器,其与接收泵和信号灯的截头圆锥形镱(“Yb”)掺杂的核心配合,并配置有仅支持SM和大直径输出端的小直径输入端 其能够支持SM和高阶模式(:HOM“),该升压器还具有包围并与芯共同延伸的包层,所述芯被配置为具有泵和信号灯的各个SM的强度分布彼此重叠,因此 重叠积分基本上等于沿着芯的整个长度的一(1),光信号的SM从泵模式中提取基本上整个能量,留下HOM,而不需要影响衍射受限束质量的放大 该系统在MW峰值功率范围和数百瓦的平均功率范围内。
Abstract:
A laser diode is configured with a substrate delimited by opposite AR and HR reflectors and a gain region. The gain region bridges the portions of the respective AR and HR reflectors and is configured with a main resonant cavity and at least one side resonant cavity. The main resonant cavity spans between the portions of the respective reflectors, and at least one additional resonant cavity extends adjacent to the main resonator cavity. The gain region is configured so that stimulated emission is generated only the main resonant cavity. Accordingly, the laser diode is operative to radiate a high-power output beam emitted through the portion of the AR reflector which is dimensioned to shape the output beam with the desired near-field.
Abstract:
A large mode area optical fiber includes a large diameter core (d1 up to 60µm), and a first cladding (diameter d2) wherein the difference between refractive index (n1 ) in the core and the first cladding (n2) is very small (?n 0.4) (n3 is preferably less than 1.3). The small change in refractive index between the core and inner cladding combined with a large change in refractive index between the first cladding and second cladding provides a significantly improved single mode holding waveguide.
Abstract translation:一个大模场面积的光纤包括一个大直径纤芯(d1直至60μm)和一个第一包层(直径d2),其中纤芯中的折射率(n1)与第一包层之间的差(n2)非常小(λ2) n <.002),因此提供非常低的数值孔径芯(NA1在0.02和0.06之间)。 优选的比率d 2 / d 1 <2。与纤芯和第一包层相比,纤维还具有第二包层,优选为空气层,其具有非常低的折射率n 3,使得第一包层具有相对高的数值 孔径(NA2> 0.4)(n3优选小于1.3)。 纤芯和内包层之间的折射率的小变化与第一包层和第二包层之间的折射率的大变化相结合提供了显着改进的单模保持波导。
Abstract:
A single-mode optical fiber laser is made by an optical waveguide segment (2) comprising an inner step-index single-mode waveguide, an outer multi-mode waveguide (11) surrounding the former, and a quartz cladding (12) surrounding said outer waveguide (11). Said inner waveguide (10) is doped with both Nd and Yb and comprises end mirrors (3, 4) adapted for realizing a continuous wave single-mode optical fiber laser device operating in 970-980 nm range. The device is pumped by multi-mode 800 nm GaAlAs laser diode which is coupled at one end of said waveguide segment (2).
Abstract:
A high power pump ultra bright low-noise source is configured with a multimode ("MM") seed source outputting a MM smooth, low-noise signal light at a wavelength λρ in a wavelength range between about 900 and 940 nm, a MM Yb fiber wavelength converter operative to convert emission of a plurality of high power ("HP"') semiconductor laser diodes at a wavelength λρ to a pump output at the desired waveiength λρ. The Yb-doped MM wavelength converter is configured with noise levels substantially identical to and lower than those of the low-noise signal light, brightness ("B") substantially equal to nxB, wherein n is a number HP semiconductor laser diodes, and B is brightness of each TIP laser diode, and output power ("Po") subsiantially equal to nPd, wherein Pd is a power of each HP laser diode, and n is the number thereof.
Abstract:
A fiber connector system provides a pigtailed monolithic terminal block of a fiber connector configured to alter a space distribution of laser output radiation. The output facet of the pigtailed monolithic terminal block is configured to alter the divergence of an output beam allowing collimation, focusing, or any desired distribution without additional optical circuitry, The fiber connector system is operative to couple two fiber's from respective different fiber devices and allows positioning additional optical components there between.