Abstract:
Systems, methods and devices are described herein for adjusting the insertion depth of a cannula associated with a portable therapeutic device within the body of a patient. The systems may include a mounting unit securable to the skin of the patient and having a mounting base and a well defining a passageway through the mounting base and a cannula unit including a cannula subcutaneously insertable through the well of the mounting unit.The well may have an adjustable height and/or adjustable anchoring mechanisms that allow for varying and customized insertion depths of the cannula within the body of the patient.
Abstract:
Disclosed are systems methods and devices, including a system that includes a dispensing unit to dispense therapeutic fluid and a remote control (900) to control, at least in part, operation of the dispensing unit. The remote control (900) includes a rechargeable power source to power at least part of the remote control, at least one connector (86) to electrically couple the remote control (900) to at least one other power source located externally to the remote control, and a controller to cause the remote control to receive power from one or more of the rechargeable power source and/or the other power source. Also disclosed is a power device (400) for powering a remote control of a dispensing system. The power device includes at least one connector (409) to electrically couple the remote control (900) to at least one power source and a portable housing (401) including a chamber to receive the at least one power source.
Abstract:
Devices, apparatuses and methods for controlling blood-glucose levels during exercise are described. For example, an insulin infusion apparatus can include a control module to regulate a rate of therapeutic fluid release into a body of a patient based on a determined therapeutic fluid requirement profile, and a dispensing unit to release therapeutic fluid at the regulated rate. The methods and devices can be implemented by receiving a first value corresponding to a first glucose concentration before an exercise activity of a user; receiving a second value corresponding to a second glucose concentration after the exercise activity for the user; determining a glucose concentration change based on a difference between the second value and the first value; modifying a basal rate based on a comparison of the glucose concentration change with a predetermined threshold value; and, recording the modified basal rate in a computer-readable memory device.
Abstract:
An insertion apparatus. for use with a device for delivery of a therapeutic fluid into a body of a patient and/or for sensing of a bodily analyte are disclosed. The apparatus includes a housing adapted for loading therein at least one cannula cartridge unit having a protective member. The protective member accommodates at least one penetrating cartridge having a subcutaneously insertable element and a penetrating member. The apparatus includes a displacement mechanism capable of protracting the penetrating cartridge towards the body of the patient, where protraction of the penetrating cartridge results in insertion of the subcutaneously insertable element into the body of the patient.
Abstract:
Embodiments of the present disclosure are directed to a skin adherable device for delivering therapeutic fluid into a body of a patient. In some embodiments, the device includes a monitoring apparatus, a pump, and a tip for delivering the therapeutic fluid into the body of the patient and for monitoring bodily analyte in the body of the patient. The pump may continuously deliver the therapeutic fluid to the body of the patient and the monitoring apparatus may continuously monitor bodily analytes of the patient.
Abstract:
Embodiments of the present disclosure are directed to a skin adherable device for delivering therapeutic fluid into a body of a patient. In some embodiments, the device includes a monitoring apparatus, a pump, and a tip for delivering the therapeutic fluid into the body of the patient and for monitoring bodily analyte in the body of the patient. The pump may continuously deliver the therapeutic fluid to the body of the patient and the monitoring apparatus may continuously monitor bodily analytes of the patient.
Abstract:
Elements are provided for absorbing shock, pressure, impact and/or other external forces exerted upon a therapeutic fluid delivery device during use to protect the device from physical and internal damage and, thereby, according to some embodiments, maintain (for example) regulated and continuous administration of therapeutic fluid into the body.
Abstract:
Disclosed is an assembly for use with a portable therapeutic device. The assembly includes a mounting housing securable to skin of a patient, and a cannula subcutaneously insertable through a passageway provided within the housing. The cannula is configured to be inserted subsequent to securing of the housing to the skin of the patient.
Abstract:
The invention provides for a therapeutic system (1600, 1700, 1800, 1900, 2000, 2100) comprising a fluid delivery device (10, 1602). The fluid delivery device comprises: a fluid reservoir (1604) for storing a fluid (1606) and an outlet port (213,1608) with a lumen (204) for outputting the fluid. The outlet port is formed on an exterior surface (1610) of the fluid delivery device, the fluid delivery device further comprises a pump (1614) for pumping the fluid through the lumen; a controller (1615) for controlling the therapeutic system. The controller is operable for regulating the pumping of fluid through the lumen. The therapeutic system further comprises an adaptor (400, 1616) for an infusion set (1618). The adaptor comprises a plug (1620) operable for attaching to the outlet port. The adaptor comprises an adaptor septum (408, 1622) operable for being pierced by the lumen when attached to the outlet port.
Abstract:
Disclosed is a portable ambulatory fluid delivery device. The device includes a dispensing unit to dispense therapeutic fluid, the dispensing unit including one or more rechargeable batteries, a housing to retain the one or more rechargeable batteries, a reservoir to contain the therapeutic fluid, a driving mechanism to cause delivery of the therapeutic fluid from the reservoir to a user's body, and at least one electrical connector to be coupled to a recharging unit to direct electrical power received from the recharging unit to recharge the one or more rechargeable batteries. At least a portion of the housing is securable to a skin of the user.