Abstract:
Die Erfindung betrifft ein Verfahren zur Separation eines polarisierbaren Biopartikels (130) umfassend die Schritte: a) dielektrophoretische Vorseparation eines polarisierbaren Biopartikels (130) aus einer Suspension von Biopartikeln; b) fluidische Separation des ausgewählten Biopartikels (130) durch Fixieren des Biopartikels (130) in einem dielektrophoretischen Feldkäfig (230) und Umströmen des Biopartikels (130) mit Fluid; c) Überführung des separierten Biopartikels (130) aus dem dielektrophoretischen Feldkäfig (230) in einen Kultivierungsraum (22); d) dielektrophoretisches Fixieren des separierten Biopartikels (130) in dem Kultivierungsraum (22) und Untersuchung, Beobachtung, Manipulation und/oder Kultivierung des separierten Biopartikels (130). Die Erfindung betrifft ferner ein mikrofluidisches System (1) und dessen Verwendung.
Abstract:
The invention relates to an electrically controllable micro-pipette for handling extremely small volumes of fluid in the range from a few hundred pl to a few mu l. The micro-pipette makes it possible to take up fluids, fluid mixtures or the micro-particles, convey them off into the interior of complex systems and deposit them accurately at a sample processing point or dispose of them. The electrically controllable micro-pipette consists of a micro-diaphragm pump filled with an inert vehicle fluid used as a micro-injection pump (2) which comprises a micro-engineered chamber (7) with an elastic chamber wall (14) having an electrically controllable actuator (12), with the micro-discharge capillary tube (4) in the form of a pipette tip. The electrically controllable micro-pipette of the invention is made using micro-system engineering methods; it may be integrated into the micro-pipette system as a hybrid structure of several individual chips or compactly into a single silicon chip. Both constructions are essentially suitable for mass production and are distinguished by extremely high precision and reproducibility. The use of the micro-pipette of the invention results, depending on the application, in a reduction in the dead volume or media consumption. The absence of mechanically moved components makes it highly reliable and gives it a long maintenance-free useful life.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Herstellung radiochemischer Verbindungen. Dabei ist vorgesehen, dass die Vorrichtung zumindest ein Reaktionsmodul, ein Dosierungsmodul und ein Vorratsmodul umfasst, wobei das Reaktionsmodul zumindest ein Reaktionsgefäß mit einer verschließbaren Öffnung aufweist, über die Substanzen, die für die Herstellung einer vorgegebenen radiochemischer Verbindungen erforderlich sind, in das Reaktionsgefäß des Reaktionsmodul eingeführt werden können und über die die hergestellte radiochemische Verbindung aus dem Reaktionsgefäß des Reaktionsmoduls entnommen werden kann; das Dosierungsmodul zumindest einen Pipettierkopf aufweist, der relativ zu dem Vorratsmodul und dem Reaktionsmodul und in x-, y- und z-Richtung beweglich ist und zumindest eine Dosierungseinheit aufweist, und in dem Vorratsmodul zumindest ein Reservoir für eine der Substanzen, die für die Herstellung der jeweiligen radiochemischen Verbindung, erforderlich sind, ausgebildet ist.
Abstract:
The invention relates to a method and a device for transferring micro- or nanostructures onto a substrate by contact stamping. The stamp is composed of a stamp receptacle and a lower stamp part, which are removably joined together. This permits both a rapid change of different lower stamp parts with different micro- or nanostructures and permits mechanical stress of the structure membranes to be avoided. The material to be printed is transferred from the source to the substrate by the wetting of the structure membrane with the substances to be transferred and by subsequently bringing the substrate into contact with an initial contact region located centrally on the structure membrane which grows concentrically towards the exterior. This achieves a reproducible transfer of substances. The convex deformation of the structure membrane is achieved by an excess pressure in the chamber formed by the stamp receptacle and the structure membrane, a gas or a liquid being supplied to the chamber via the media connection. If the structure membrane is permeable, the chamber has a reservoir function for the material to be transferred, said material diffusing through the structure membrane. Micro- or nano-arrays with different fine structures can be created on the substrate surface by a positioning mechanism comprising a marking system.
Abstract:
For the purposes of the located cryo-preservation of individual living biological objects (e.g. cells) or a predeterminable assembled number thereof, said objects are emptied from a storage container on a supercooled substrate (13) in an enveloping solution in microdrop form (12), e.g. via a microdropper (12). The substrate is brought to temperature via a coolant (15), with the surface to be covered in a gas atmosphere or a vacuum (14). The surface of the substrate is kept at a temperature T1 causing the impinging microdrops to freeze, while the substrate surface is microstructured for support and may contain measuring components. By suitably moving either the substrate or the microdropper it is possible to apply the microdrops individually and in samples in a freely selectable array or one predetermined by the substrate structure. The substrates with the applied microdrops and the cells frozen therein are stored at temperatures T2 of down to -273 DEG C and or subjected to a material-removing process with a treatment agent (17) or to a deposition treatment. It is possible in the deep-frozen state to perform manipulations like removal by mechanical action or the addition of solutions and substances to the surface of the substrate. On thawing, the substrate surface is taken to a temperature T1 above the freezing point of the enveloping solution and the microdrop array is thawed in a predeterminable manner.
Abstract:
The invention relates to a method for the separation of a polarisable bioparticle comprising the steps: a) dielectrophoretic preseparation of a polarisable bioparticle from a suspension of bioparticles; b) fluidic separation of the selected bioparticle by fixing the bioparticle in a dielectrophoretic field cage and circulating fluid around the bioparticle; c) transferring the separated bioparticle from the dielectrophoretic field cage to a culture chamber; d) dielectrophoretic fixing of the separated bioparticle in the culture chamber and study, observation, manipulation and/or culturing of the separated bioparticle. The invention further relates to a microfluidic system and use thereof.
Abstract:
The invention relates to a device for producing radiochemical compounds. Said device comprises at least a reaction module, a dosing module, and a supply module. The reaction module has at least one reaction vessel that includes a closeable opening through which substances needed for the production of a predefined radiochemical compound can be introduced into the reaction vessel of the reaction module and through which the produced radiochemical compound can be removed from the reaction vessel of the reaction module. The dosing module has at least one pipetting head which can be moved relative to the supply module and the reaction module in the x, y, and z directions and also has at least one dosing unit. At least one storage tank for one of the substances needed for the production of the respective radiochemical substance is formed in the supply module.
Abstract:
The invention relates to an electrically controllable micro-pipette for handling extremely small volumes of fluid in the range from a few hundred pl to a few νl. The micro-pipette makes it possible to take up fluids, fluid mixtures or the micro-particles, convey them off into the interior of complex systems and deposit them accurately at a sample processing point or dispose of them. The electrically controllable micro-pipette consists of a micro-diaphragm pump filled with an inert vehicle fluid used as a micro-injection pump (2) which comprises a micro-engineered chamber (7) with an elastic chamber wall (14) having an electrically controllable actuator (12), with the micro-discharge capillary tube (4) in the form of a pipette tip. The electrically controllable micro-pipette of the invention is made using micro-system engineering methods; it may be integrated into the micro-pipette system as a hybrid structure of several individual chips or compactly into a single silicon chip. Both constructions are essentially suitable for mass production and are distinguished by extremely high precision and reproducibility. The use of the micro-pipette of the invention results, depending on the application, in a reduction in the dead volume or media consumption. The absence of mechanically moved components makes it highly reliable and gives it a long maintenance-free useful life.
Abstract:
A fluid micro-diode for directionally coupling a dosed fluid to another stationary or flowing target fluid contained in a closed system, in particular in the sub-microliter range, is characterised by a planar arrangement of micro-capillaries open at both ends or by a system of micro-capillaries open at both ends and closely arranged next to each other, which are in direct contact with the target fluid at their outlet side and are separated at their inlet side from the dosed fluid to be intermittently supplied by an air or gas cushion, forming a meniscus (6) whose curvature depends on the surface tension. The fluid micro-diode forms a component (1) made of a sandwich arrangement of a flow channel (9), of the diode itself designed as a grid of capillaries and of a spacer chip (2) that secures the gaseous medium in the area of the coupling surface. These three stacked elements are produced as modules by micro-structuring techniques and may be integrated into micro-systems by building and joining techniques for micro-systems. The fluid micro-diode is characterised by a simple design and coupling flexibility to various micro-flow systems in which exists a hydrostatic pressure in the range of the prevailing ambient pressure.
Abstract:
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Übertragung von Mikro- oder Nanostrukturen auf ein Substrat durch Kontaktstempeln. Der Stempel wird dabei aus einer Stempelaufnahme und einem Stempel unterteil gebildet, die lösbar miteinander verbunden sind. Dadurch wird sowohl ein schneller Wechsel zwischen verschiedenen Stempelunterteilen mit unterschiedlichen Mikro- oder Nanostrukturen möglich, als auch die Vermeidung mechanischer Belastung der Strukturmembranen erreicht. Die Übertragung der zu druckenden Materialien von der Quelle auf das Substrat erfolgt durch Benetzung der Strukturmembran mit den zu übertragenden Substanzen und der anschließenden Kontaktierung des Substrats von einem mittig auf der Strukturmembran befindlichen initialen Kontaktbereich nach außen konzentrisch anwachsend. Dadurch wird eine reproduzierbare Übertragung der Substanz erzielt. Die konvexe Verformung der Strukturmembran wird durch einen Überdruck in der aus der Stempelaufnahme und Strukturmembran gebildeten Kammer erreicht, wobei ein Gas oder eine Flüssigkeit über den Medienanschluss in die Kammer zugeführt wird. Bei permeabel gestalteter Strukturmembran besitzt die Kammer eine Reservoirfunktion für die zu übertragenden Materialien, die durch die Strukturmembran diffundieren. Durch einen Positionierungsmechanismus mit Markierungssystem werden Mikro- oder Nanoarrays mit verschiedenen Feinstrukturen auf der Substratoberfläche erzeugt.