Abstract:
The present disclosure relates to fracturing of polygon data, with one application being microlithography. In particular, it relates to preserving data regarding edges and/or vertices of the original polygons as the polygons are triangulated and even if the results of triangulation are further fractured.
Abstract:
In a pattern generation method, properties of designs are extracted in a mask data preparation system, and the properties are propagated to a lithography write system. A pattern is generated based on fractured design data and the extracted properties. By preserving the design intent to the lithography write system, the fidelity of the pattern replication may improve.
Abstract:
The technology disclosed relates to variable tapers to resolve varying overlaps between adjacent strips that are lithographically printed. Technology disclosed combines an aperture taper function with the variable overlap taper function to transform data and compensate for varying overlaps. The variable taper function varies according to overlap variation, including variation resulting from workpiece distortions, rotor arm position, or which rotor arm printed the last stripe. Particular aspects of the present invention are described in the claims, specification and drawings.
Abstract:
The present invention relates to a method for adjusting a pattern to be imaged onto a workpiece. The pattern representing an image is divided ina plurality of regions. A pattern density in said plurality of region is computed. At least one feature in at least one of said plurality of regions is adjusted based on the pattern density in at least one other region. An adjusted pattern is fed to a modulator. The image is created on said workpiece by using said corrected pattern. The invention also relates to an apparatus for imaging adjusted pattern on a workpiece, a semiconducting wafer to be imaged with an adjusted pattern and a mask or a reticle to be imaged woth an adjusted pattern.
Abstract:
The technology disclosed relates to variable tapers to resolve varying overlaps between adjacent strips that are lithographically printed. Technology disclosed combines an aperture taper function with the variable overlap taper function to transform data and compensate for varying overlaps. The variable taper function varies according to overlap variation, including variation resulting from workpiece distortions, rotor arm position, or which rotor arm printed the last stripe. Particular aspects of the present invention are described in the claims, specification and drawings.
Abstract:
An aspect of the present invention includes a method for reshaping sub-objects in at least one object in pattern design data to be presented to a mask writer or a direct writer for producing a pattern onto a workpiece, where said object comprises a plurality of slivers in a first direction, comprising the actions of: a) generating a list of slivers, repeating the actions of: b) comparing a dynamic object in an object list with the slivers in said list of slivers to look for adjacent slivers, c) removing adjacent slivers from said list of slivers to said object list, d) merging adjacent slivers with said dynamic object, e) terminating the repetition when no slivers in said list of slivers are adjacent to said dynamic object in said object list. Other aspects of the present invention are reflected in the detailed description, figures and claims.
Abstract:
An aspect of the present invention includes a method for reshaping sub-objects in at least one object in pattern design data to be presented to a mask writer or a direct writer for producing a pattern onto a workpiece, where said object comprises a plurality of slivers in a first direction, comprising the actions of: a) generating a list of slivers, repeating the actions of: b) comparing a dynamic object in an object list with the slivers in said list of slivers to look for adjacent slivers, c) removing adjacent slivers from said list of slivers to said object list, d) merging adjacent slivers with said dynamic object, e) terminating the repetition when no slivers in said list of slivers are adjacent to said dynamic object in said object list. Other aspects of the present invention are reflected in the detailed description, figures and claims.
Abstract:
The present invention relates to customizing individual workpieces, such as chip, flat panels or other electronic devices produced on substrates, by direct writing a custom pattern. Customization can be per device, per substrate, per batch or at some other small volume that makes it impractical to use a custom mask or mask set. In particular, it relates to customizing a latent image formed in a radiation sensitive layer over a substrate, merging standard and custom pattern data to form a custom pattern used to produce the customized latent image. A wide variety of substrates can benefit from the technology disclosed.
Abstract:
The present disclosure relates to the re-sampling of pixel data, with one application being micro-lithography. In particular, it relates to the extraction of modulator pixels from a rasterized image, as a function of how the modulator moves across the rasterized image.
Abstract:
In a pattern generation method, properties of designs are extracted in a mask data preparation system, and the properties are propagated to a lithography write system. A pattern is generated based on fractured design data and the extracted properties. By preserving the design intent to the lithography write system, the fidelity of the pattern replication may improve.