Abstract:
An electric vehicle can be configured to execute an association procedure with one or more charging stations in a charging facility to securely connect to and receive electric power from one of the charging stations. The electric vehicle can broadcast one or more service matching messages to the charging stations and, in response, can receive attenuation information from one or more of the charging stations. The electric vehicle can analyze the attenuation information received from the charging stations to identify with which charging station the electric vehicle should associate (e.g., to determine which charging station should provide electric power to the electric vehicle). The electric vehicle can then associate with (and receive electric power from) the identified charging station.
Abstract:
Functionality for secure client authentication and service authorization in a shared communication network are disclosed. A managing network device of a communication network causes a securely connected client network device to perform an account authorization process with an accounting network device in parallel with a service matching process with the managing network device and one or more service providers of the communication network. The managing network device executes the service matching process and securely matches the client network device with one of the service providers. The accounting network device executes the account authorizing process with the client network device and provides a service voucher to the managing network device authorizing one or more of the service providers to service the client network device. The managing network device transmits the service voucher to the matched service provider to prompt the matched service provider to service the client network device.
Abstract:
Associating service agents in communication over a network to one or more respective clients coupled to the network at respective ports of the network is described. At a first service agent, a first signal is received from a first client coupled to the network at a first port. The first signal propagates over a first signal propagation path between the first service agent and the first port. An association between the first service agent and the first client is established based at least in part on a difference between: the first signal propagation path between the first service agent and the first port, and a second signal propagation path between the first service agent and a second port or between a second service agent and the first port.
Abstract:
A method for communicating among nodes in a network includes determining, by a transmitter, a first frequency band and at least a second frequency band to be used for communicating data packets, wherein a maximum allowable power spectral density in the first frequency band is greater than a maximum allowable power spectral density in the second frequency band. The method also includes adjusting power spectral density for a first group of frequencies in the first frequency band such that the adjusted power spectral density of the first group does not exceed the maximum allowable power spectral density of the first frequency band and a quantization noise introduced by the transmitter is less than a threshold value for a signal transmitted in the second frequency band. The method further includes modulating at least a portion of a data packet transmitted by the transmitter to at least a first receiver in accordance with the adjusted power spectral density.
Abstract:
A method of operating in a network in which stations communicate over a shared medium is described. The method provides regularly repeated contention free intervals, CSMA communication during times outside the contention free intervals, and distributed control over the initiation and makeup of the contention free intervals to a plurality of stations so that any of the plurality of stations can independently initiate transmission within the contention free interval.
Abstract:
The present disclosure provides techniques for rate adaptation under congestion and latency constraints. The approaches described herein focus on aspects of latency, reliability, and power consumption instead of the traditional aspect of throughput. In an example, a method for rate adaptation is disclosed. The method may include determining whether to transmit a new packet or a retry packet. The method may also include reducing a maximum rate for a rate search in response to determining to transmit the retry packet. The method may further include transmitting the retry packet based on the reduced maximum rate.
Abstract:
A powerline network may comprise powerline communication (PLC) devices of a first class of PLC devices that are incompatible with PLC devices of a second class of PLC devices. This can result in interference between communications of the first and the second classes of PLC devices. A dual mode PLC device that is compatible with the first and the second classes of PLC devices can be implemented for coexistence with both classes of PLC devices. The dual mode PLC device can determine whether the powerline network comprises a combination of PLC devices of the first and the second classes of PLC devices. One of a plurality of packet headers that is compatible with both the classes of PLC devices can be selected for transmission in response to determining that the powerline network comprises a combination of PLC devices of the first and the second classes of PLC devices.
Abstract:
Communicating between stations over a shared medium comprises: receiving, at a destination station, a first waveform that includes one or more segments of a payload that originated from an origin station with a sequence of multiple segments, the one or more segments included in the first waveform having been transmitted over the shared medium by the origin station and by each of one or more repeater stations, and the first waveform indicating which of the sequence of multiple segments were not correctly decoded by at least one of the repeater stations; generating, based on the first waveform, acknowledgement information that specifies which of the sequence of multiple segments have been correctly decoded by the destination station; and transmitting a second waveform from the destination station over the shared medium, the second waveform including the acknowledgement information.
Abstract:
A method is provided for managing transmissions among nodes communicating over a shared communication medium. The method includes: transmitting a frame from a sender node to a plurality of receiver nodes, the frame including at least a portion of a data packet and control information associated with accessing the communication medium; transmitting over the communication medium information indicating an end of a time window allocated for transmission of acknowledgement signals to the sender node from at least some of the plurality of receiver nodes; assigning each of a plurality of time slots in the time window to different subsets of the plurality of receiver nodes; and for a given receiver node, transmitting an acknowledgement signal from the given receiver node to the sender node during a time slot assigned to the given receiver node, the acknowledgement signal responsive to at least the frame.
Abstract:
A method is described for communicating among multiple devices over a shared communication medium. The method includes, in a schedule among multiple subsets of the devices that includes at least one respective time slot for each subset, transmitting from at least one of the devices in a given subset a presence signal associated with the given subset within a time slot for the given subset. A presence signal associated with a given subset is configured to indicate the presence of at least one device in the given subset. The method also includes communicating among devices in a given subset based on presence signals detected from one or more devices in at least one different subset.