Abstract:
Disclosed herein are methods of identifying biomarkers (such as genes (e.g., RNA or mRNA), proteins, and/or small molecules) that can be used to predict organ or tissue function or dysfunction. In some embodiments, the methods include ex vivo perfusion of the organ or tissue, collection of samples from the organ or tissue (for example, perfusate, fluids produced by the organ (such as bile or urine), or tissue biopsies) and measuring the level of one or more biomarkers in the sample. It is also disclosed herein that an analysis of biomarkers (such as genes (e.g., RNA or mRNA), proteins, and/or small molecules) present in a biological sample from an organ, tissue, or subject can be used to identify whether the organ, tissue, or subject is at risk for (or has) organ dysfunction or organ failure.
Abstract:
This invention is related to the field of the prevention and treatment of kidney disease. The treatment of kidney disease may be tailored depending upon the need for, or expectation of, long-term dialysis. For example, prediction of long-term dialysis treatment can be determined by monitoring urine biomarkers related to the development of chronic kidney disease. For example, a normalized time course of hyaluronic acid can be used to determine whether a patient having suffered acute kidney injury will require long-term dialysis.
Abstract:
This invention is related to the field of the prevention and treatment of kidney disease. The treatment of kidney disease may be tailored depending upon the need for, or expectation of, renal recovery. For example, renal recovery can be determined by monitoring urine biomarkers related to the development of chronic kidney disease. For example, a normalized time course of approximately fourteen Days measuring urinary proteins can be used to establish the risk of recovery versus non-recovery in patient's having suffered an acute kidney injury. Alternatively, the invention describes signature protein expression profiles to establish the probability of renal recovery and/or renal non-recovery.
Abstract:
This invention is related to the field of the prevention and treatment of kidney disease. The treatment of kidney disease may be tailored depending upon the need for, or expectation of, long-term dialysis. For example, prediction of long-term dialysis treatment can be determined by monitoring urine biomarkers related to the development of chronic kidney disease. For example, a normalized time course of approximately fourteen Days measuring hyaluronic acid, death receptor 5, and/or transforming growth factor β1 can be used to establish the risk of recovery versus non-recovery in patient' s having suffered an acute kidney injury.
Abstract:
This invention is related to the field of the prevention and treatment of kidney disease. The treatment of kidney disease may be tailored depending upon the need for, or expectation of, long-term dialysis. For example, prediction of long-term dialysis treatment can be determined by monitoring urine biomarkers related to the development of chronic kidney disease. For example, a normalized time course of approximately fourteen Days measuring hyaluronic acid, death receptor 5, and/or transforming growth factor ß1 can be used to establish the risk of recovery versus non-recovery in patient' s having suffered an acute kidney injury.
Abstract:
The invention provides a method of ameliorating systemic inflammation in a patient involving administering to the patient a therapeutically effective dose of composition including polystyrene divinyl benzene copolymer and a polyvinyl pyrrolidone polymer. More particularly, the method relates to using these polymers as an enteral sorbent preparation to remove inflammatory mediators, such as cytokines, from the intestinal lumen. The polymers can be in the form of a preparation of polystyrene divinyl benzene copolymer beads with a biocompatible polyvinyl pyrrolidone polymer coating.
Abstract:
This invention is related to the field of the prevention and treatment of kidney disease. The treatment of kidney disease may be tailored depending upon the need for, or expectation of, long-term dialysis. For example, prediction of long-term dialysis treatment can be determined by monitoring urine biomarkers related to the development of chronic kidney disease. For example, a normalized time course of hyaluronic acid can be used to determine whether a patient having suffered acute kidney injury will require long-term dialysis.