Abstract:
A filter of the present invention includes a first terminal, a second terminal and a resonant element. The resonant element includes a multilayer substrate, ground vias through the multilayer substrate and a signal via through the multilayer substrate, surrounded by the ground vias and connected to the first and the second terminals. The multilayer substrate further includes a top conductor layer, a bottom conductor layer with at least one aperture, at least one intermediate conductor layer between the top and the bottom conductor layers and a dielectric material which isolates the top, each intermediate and the bottom conductor layers from each other. Each intermediate conductor layer includes a conductive plate connected to the signal via and isolated from the ground vias. The bottom conductor layer is connected to the other end of the signal via. The signal via and an area surrounded by the ground vias in the multilayer substrate act as an artificial dielectric.
Abstract:
A composite via structure in a multilayer printed circuit board (PCB) and also compact and shielded filters formed by the use of composite via structures as building blocks are provided. The composite via structure consists of two functional parts. The first functional part is designed to form an interconnected circuit with low return and leakage losses between the first pad disposed at the one side of the PCB and the special pad serving for a connection to a planar transmission line. The second functional part of the composite via structure serves to form a shielded open- or short-circuited resonant length (stub) extended in the vertical direction from the special pad to the second pad disposed at the opposite side of the PCB.
Abstract:
A filter of the present invention comprises a multilayer substrate, two terminals, a ground conductor and a hybrid resonator. The multilayer substrate includes a plurality of conductor layers and a dielectric configured to isolate said plurality of conductor layers from each other. The hybrid resonator is disposed in the multilayer substrate and comprises a first and a second resonant elements and a coupling strip connecting the first and said second resonant elements. Each resonant element comprises a signal via, a group of ground vias and an artificial dielectric. Each signal via is disposed through the multilayer substrate. Each group of ground vias is disposed through the multilayer substrate and configured to surround the signal via. Each artificial dielectric is disposed in the multilayer substrate and between the signal via and the group of ground vias. The artificial dielectric comprises a conductive plate connected to the first signal via and an isolating slit isolating the first conductive plate from the group of ground vias.
Abstract:
A filter is provided with a planar transmission line and a combined via structure connected to (both) one ends of the planar transmission line. The planar transmission line and the combined via structure are disposed in a same multilayer board. The combined via structure comprises two working parts. The first working part comprises a segment of signal via and a plurality of segments of ground vias surrounding the signal via. The second working part comprises a segment of the same signal via, a plurality of segments of the same ground vias, smooth conductive plate and corrugated conductive plate. The smooth conductive plate and the corrugated conductive plate are connected to the signal via. The second working part comprises a segment of the same signal via, a plurality of segments of the same ground vias and corrugated conductive plate. The corrugated conductive plate is connected to the signal via.
Abstract:
According to one embodiment, a broadband transition to joint a via structure and a planar transmission line in a multilayer substrate is formed as an intermediate connection between the signal via pad and the planar transmission line disposed at the same conductor layer. The transverse dimensions of the transition are equal to the via pad diameter at the one end and strip width at another end; The length of the transition can be equal to the characteristic dimensions of the clearance hole in the direction of the planar transmission line or defined as providing the minimal excess inductive reactance in time-domain according to numerical diagrams obtained by three-dimensional full-wave simulations.
Abstract:
A wideband transition of the present invention between a planar transmission line and a waveguide comprises a substrate, a segment of the planar transmission line, a conductive patch, an adjusting conductor plate and a section of the waveguide. The segment is arranged in a top conductor layer of the substrate. The conductive patch is arranged in the top conductor layer and connected to one end of the segment. The adjusting conductor plate is arranged in the top conductor layer or another conductor layer of the substrate next to the top conductor layer and isolated from any other conductor. The section is disposed above the conductive patch and connected to a conductor plane at the top conductor layer. Another end of the segment is a first terminal of the wideband transition. Another end of the section is a second terminal of the wideband transition.
Abstract:
A resonant via structure is provided with a multilayer substrate, a signal via conductor and ground vias. The multilayer substrate includes conductor layers and a dielectric. The dielectric isolates each of the conductor layers. The signal via conductor is disposed through the multilayer substrate. The ground vias are disposed through the multilayer substrate and around the signal via conductor. The dielectric comprises two sections disposed between the signal via and ground vias, in the plane of conductor layers. The first section is disposed between the first layer and other layer of the conductor layers. The second section is disposed between the other layer and the last layer of the conductor layers.
Abstract:
To provide more compact dimensions of a via structure formed by signal via pairs and ground vias in multilayer substrate and, also, to increase the isolation of the signal via pairs in the via structure. Also, another object of presented invention is improving impedance control for via structures in the wide frequency band and reduction of transformation between differential and common modes. A multilayer substrate is provided such that the multilayer substrate comprising a high-isolated via cell wherein the high-isolated via cell comprises: two signal via pairs; a shield structure around two signal via pairs consisting of ground vias and ground strips connected to ground vias wherein the shield structure is formed symmetrically in respect to two via pairs to reduce the transformation between mixed modes and also leakage from two signal via pairs; a clearance hole separating signal via pairs from other conductive parts of the multilayer substrate and having predetermined dimensions to provide broadband operation of the high-isolated via cell; and the separating strip disposed symmetrically between said signal via pairs to provide crosstalk reduction between two signal via pairs and common mode decrease.
Abstract:
A filter of the present invention comprises a multilayer substrate, two terminals, a ground conductor and a hybrid resonator. The multilayer substrate includes a plurality of conductor layers and a dielectric configured to isolate said plurality of conductor layers from each other. The hybrid resonator is disposed in the multilayer substrate and comprises a first and a second resonant elements and a coupling strip connecting the first and said second resonant elements. Each resonant element comprises a signal via, a group of ground vias and an artificial dielectric. Each signal via is disposed through the multilayer substrate. Each group of ground vias is disposed through the multilayer substrate and configured to surround the signal via. Each artificial dielectric is disposed in the multilayer substrate and between the signal via and the group of ground vias. The artificial dielectric comprises a conductive plate connected to the first signal via and an isolating slit isolating the first conductive plate from the group of ground vias.
Abstract:
A filter of the present invention includes a plurality of via structures with a multilayer substrate. Each of the plurality of via structures includes first, second and third functional sections. One end of a signal via of the first functional section is connected to one end of a signal via of the second functional section and another end of the signal via of the second functional section is connected to two signal vias of the third functional section. Those signal vias are surrounded by a plurality of ground vias. Input and output ports of the filter are connected to another end of the signal via of each first functional section.