Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a GaSb nucleation layer on a substrate, forming a Ga(Al)AsSb buffer layer on the GaSb nucleation layer, forming an In0.52Al0.48As bottom barrier layer on the Ga(Al)AsSb buffer layer, and forming a graded InxAl1-xAs layer on the In0.52Al0.48As bottom barrier layer thus enabling the fabrication of low defect, device grade InGaAs based quantum well structures.
Abstract:
Devices incorporating a single to a few-layer MoS 2 channels in combination with optimized substrate, dielectric, contact and electrode materials and configurations thereof, exhibit light emission, photoelectric effect, and superconductivity, respectively.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a GaSb nucleation layer on a substrate, forming a Ga(Al)AsSb buffer layer on the GaSb nucleation layer, forming an In 0.52 Al 0.48 As bottom barrier layer on the Ga(Al)AsSb buffer layer, and forming a graded In x Al 1-x As layer on the In 0.52 Al 0.48 As bottom barrier layer thus enabling the fabrication of low defect, device grade InGaAs based quantum well structures.
Abstract:
An optoelectronic device includes an Sb-based metamorphic photodetector grown over a silicon substrate via a buffer layer. The device includes a layered structure. The layered structure can include a silicon substrate, a buffer layer formed over the Si substrate, and an infrared photodetector formed over the buffer layer. In some embodiments, the buffer layer includes a composite buffer layer having sublayers. For example, the composite buffer layer includes a Ge-based sublayer formed over the substrate, a III-As sublayer grown over the Ge-based sublayer, and a Ill-Sb sublayer formed over the III-As sublayer.
Abstract:
The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.
Abstract:
The present invention provides methods and compositions comprising at least one thermolysin-like neutral protease enzyme with improved storage stability and/or catalytic activity. In some embodiments, the thermolysin finds use in cleaning and other applications comprising detergent. In some particularly preferred embodiments, the present invention provides methods and compositions comprising thermolysin formulated and/or engineered to resist detergent-induced inactivation.
Abstract:
The present invention provides methods and compositions comprising at least one thermolysin-like neutral protease enzyme with improved storage stability and/or catalytic activity. In some embodiments, the thermolysin finds use in cleaning and other applications comprising detergent. In some particularly preferred embodiments, the present invention provides methods and compositions comprising thermolysin formulated and/or engineered to resist detergent-induced inactivation.
Abstract:
The present invention provides methods and compositions comprising at least one neutral metalloprotease enzyme that has improved stability in the presence of a metal chelator. In some embodiments, the neutral metalloprotease finds use in cleaning and other applications comprising citrate. In some particularly preferred embodiments, the present invention provides methods and compositions comprising variant neutral metalloprotease(s) engineered to resist citrate-induced autolysis.
Abstract:
The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.