Abstract:
A cementitious article and a method of making a cementitious article are disclosed. The cementitious article comprises a cementitious component that comprises a polyvinyl acetate type polymer, a monobasic phosphate, and optionally boric acid. Cementitious articles, such as board, are prepared such that the polyvinyl acetate type polymer, the monobasic phosphate, and optionally boric acid can be present in the cementitious core, and/or in dense layers if present. The concentration of the polyvinyl acetate type polymer, monobasic phosphate, and optionally boric acid in the cementitious article can increase from a central region (A) to peripheral regions (B) and (C), respectively. In some embodiments, the polyvinyl acetate type polymer is a polyvinyl alcohol and the monobasic phosphate is monoammonium phosphate.
Abstract:
A cementitious composite article comprising (a) a cementitious core, (b) a skim coat cementitious layer in contact with the cementitious core having a density greater than the cementitious core, and (c) a fibrous mat comprising (i) microfibers and (ii) continuous fibers having a length of about 0.6 cm or more, wherein the fibrous mat comprises an inner surface in contact with the skim coat cementitious layer; as well as a method for manufacturing same.
Abstract:
A fibrous mat-faced cementitious article comprising (a) a cementitious core, and (b) a first fibrous mat comprising polymer or mineral fibers and a hydrophobic finish on at least one surface thereof, wherein the hydrophobic finish is in contact with the cementitious core, and a method of preparing a fibrous mat-faced cementitious article, as well as a method of preparing a water-resistant cementitious article comprising (a) preparing an aqueous siloxane dispersion, wherein the dispersion comprises about 4 wt.% to about 8 wt.% siloxane, (b) combining the siloxane dispersion with a cementitious mixture to provide a cementitious slurry, (c) depositing the cementitious slurry onto a substrate, and (d) allowing the cementitious slurry to harden, thereby providing a cementitious article.
Abstract:
An example system for making a gypsum board product comprises a container for containing a gypsum slurry, a moving receiver in communication with the container, wherein the container substantially continuously deposits the gypsum slurry on the moving receiver. A first and at least a second cellulose ether supply containing a first cellulose ether communicate with the container. The first and second supplies contain cellulose ethers having different physical or chemical properties. A controller is configured to change the amount of the first and second cellulose ethers delivered to the container in response to a change in at least one slurry physical property.
Abstract:
An improved gypsum slurry that includes water, calcium sulfate hemihydrate, a polycarboxylate dispersant and a modifier. The modifier is chemically configured to improve the efficacy of the polycarboxylate dispersant. Preferred modifiers include cement, lime, slaked lime, soda ash, carbonates, silicates and phosphates.
Abstract:
A method for forming a gypsum slurry comprises the steps of combining gypsum and water to form a slurry, combining cellulose ether with at least a second material configured to delay solubilization of the cellulose ether, and adding the combined cellulose ether and at least a second material to the slurry.
Abstract:
A fibrous mat-faced cementitious article comprising (a) a cementitious core, and (b) a first fibrous mat comprising polymer or mineral fibers and a hydrophobic finish on at least one surface thereof, wherein the hydrophobic finish is in contact with the cementitious core, and a method of preparing a fibrous mat-faced cementitious article, as well as a method of preparing a water-resistant cementitious article comprising (a) preparing an aqueous siloxane dispersion, wherein the dispersion comprises about 4 wt.% to about 8 wt.% siloxane, (b) combining the siloxane dispersion with a cementitious mixture to provide a cementitious slurry, (c) depositing the cementitious slurry onto a substrate, and (d) allowing the cementitious slurry to harden, thereby providing a cementitious article.
Abstract:
An improved gypsum slurry that includes water, calcium sulfate hemihydrate, a naphthalene sulfonate dispersant and a modifier. The modifier is chemically configured to improve the efficacy of the naphthalene sulfonate dispersant. Preferred modifiers include cement, lime, slaked lime, soda ash, carbonates, silicates and phosphates.
Abstract:
A gypsum-containing panel and a method of making it are disclosed including at least one facing layer having a first polymer that is reinforced with reinforcing fibers and a gypsum core that has a second polymer in a second polymer matrix interwoven with a gypsum matrix. The first polymer in the facing layer and said second polymer matrix in said gypsum core form a continuous polymer matrix.
Abstract:
A gypsum slurry includes calcium sulfate hemihydrate, water and calcium sulfate dihydrate is coated with a hydrophilic, dispersible coating. The coating is less soluble than the calcium sulfate hemihydrate to delay exposure of the landplaster to the remainder of the slurry, preventing premature crystallization and the early stiffening that accompanies it. Another embodiment is a gypsum slurry that includes calcium sulfate hemihydrate, a polycarboxylate dispersant, water and coated calcium sulfate dihydrate. In this case, the hydrophilic, dispersible coating is selected to serve as a modifier to enhance the ability of the dispersant to fluidize the gypsum slurry.