Abstract:
Methods of delaminating a graphene film (60) from a metal substrate (50) are disclosed that substantially preserve the metal substrate. The methods include forming a support layer (80) on the graphene film and then performing an electrochemical process in an electrochemical apparatus (10). The electrochemical process creates gas bubbles (36) at the metal-film interface (64), thereby causing the delamination. The graphene film and support layer form a structure (86) that is collected by a take-up roller (120). The support layer and graphene structure are then separated to obtain the graphene film.
Abstract:
A coated substrate includes a substrate and a coating containing a water insoluble polymer and a water soluble polymer, the two polymers, due to different water affinity, forming a nanosegregant on the substrate. Also disclosed are a method of preparing the above-described coated substrate and the use of this coated substrate in a solid-state supercapacitor.
Abstract:
The present invention discloses a method for transferring a thin film from a first substrate to a second substrate comprising the steps of: providing a transfer structure and a thin film provided on a surface of a first substrate, the transfer structure comprising a support layer and a film contact layer, wherein the transfer structure contacts the thin film; removing the first substrate to obtain the transfer structure with the thin film in contact with the film contact layer; contacting the transfer structure obtained with a surface of a second substrate; and removing the film contact layer, thereby transferring the thin film onto the surface of the second substrate.
Abstract:
A graphene-based saturable absorber device (22) suitable for use in a ring-cavity fiber laser (200) or a linear-cavity fiber laser (300) is disclosed. The saturable absorber device includes an optical element (10) and a graphene-based saturable absorber material (18) supported by the optical element and comprising at least one of graphene, a graphene derivative and functionalized graphene. An examplary optical element is an optical fiber having an end facet (14) that supports the saturable absorber material. Various forms of the graphene-based saturable absorber materials and methods of forming same are also disclosed.
Abstract:
Methods of forming graphene (G) by graphite exfoliation, wherein the methods include: providing a graphite sample (10) having atomic layers (11) of carbon; introducing a salt (12) and a solvent (14) into the space (9) between the atomic layers; expanding the space between the atomic layers using organic molecules and ions from the solvent and the salt; and separating the atomic layers using a driving force (45) to form one or more sheets of graphene. The graphene produced by the methods can be used to form solar cells (70), to perform DNA analysis, and for other electrical, optical and biological applications.
Abstract:
A tandem solar cell with graphene interlayer and method of making are disclosed. The graphene interlayer can serve as a recombination contact to a pair of photoactive subcells electrically connected in series or as a common electrode to a pair of photoactive subcells electrically connected in parallel. The highly conducting, transparent nature, and easily modifiable chemical and electrical properties of a graphene interlayer enable tunable energy matching to the photoactive subcells. Using different photoactive subcells that can harvest light across the solar spectrum results in a tandem solar cell that can achieve high power conversion efficiency.
Abstract:
There is provided a conjugated molecule that is useful as a conductive path in an electronic device. The conjugated molecule includes at least one p/n junction so as to provide a direction to electron flow and one end alligator clip group which allows for self-orientation of the molecule during assembly in a device, resulting in an asymmetric structure of the molecule. The conjugated molecule may be used in diodes, molecular switches, transistors, and in the manufacture of memory devices.