Abstract:
The present invention concerns antireflective films comprising a high refractive index layer (60) and low refractive index layer (80) disposed on the high refractive index layer. The antireflective films have a microstructured surface (70) that can be derived from a microreplicated tool.
Abstract:
Microstructured films comprising surface modified inorganic oxide particles, surface modified inorganic nanoparticles having a high refractive index, and polymerizable resins are described.
Abstract:
A copolymer comprises the reaction product of (a) (meth)acrylate functionalized nanoparticles, (b) vinyl monomer, and (c) silicone macromer. The (meth)acrylate functionalize nanoparticles are selected from the group consisting of silica nanoparticles, zirconia nanoparticles, titania nanoparticles, and combinations thereof.
Abstract:
A copolymer comprises the reaction product of (a) (meth)acrylate functionalized nanoparticles, (b) vinyl monomer, and (c) mercapto-functional silicone. The (meth)acrylate functionalize nanoparticles are selected from the group consisting of silica nanoparticles, zirconia nanoparticles, titania nanoparticles, and combinations thereof.
Abstract:
Microstructured films such as brightness enhancing films, polymerizable resin compositions comprising an organic component and surface modified nanoparticles, and surface modified nanoparticles are described. The microstructured film has a polymerized structure comprising the reaction product of the polymerizable resin composition (e.g. having a refractive index of at least 1.58). The cured nanocomposite (e.g. structure) can exhibit improved crack resistance. In some embodiments, the flexibility is expressed in terms of a cylindrical mandrel bend test property (e.g. a mandrel size to failure of less than 6 mm or a mandrel size to failure according to the equation D = 1000(T/0.025-T) wherein T is the thickness in millimeters of a (e.g. preformed base layer). In other embodiments, the flexibility is expressed in terms of a tensile and elongation property (e.g. a tensile strength at break of at least 25 MPa and an elongation at break of at least 1.75%).
Abstract:
A copolymer comprises the reaction product of (a) (meth)acrylate functionalized nanoparticles, (b) vinyl monomer, and (c) silicone macromer. The (meth)acrylate functionalize nanoparticles are selected from the group consisting of silica nanoparticles, zirconia nanoparticles, titania nanoparticles, and combinations thereof.
Abstract:
A method of preparing zirconia-containing nanoparticles and a method of preparing a composite material that includes the zirconia-containing nanoparticles are provided. A method of treating a zirconium carboxylate salt solution to remove alkali metal ions and alkaline earth ions is provided. The treated solution can be used as a feedstock to prepare the zirconia-containing nanoparticles. Additionally, a continuous hydrothermal reactor system is provided that can be used, for example, to prepare the zirconia-containing nanoparticles.
Abstract:
Orthodontic adhesives are claimed which use polymeric filler particles with defined particle size characteristics. The particle size characteristics are controlled such that these adhesives provide comparable mechanical retention and cohesive strength of conventional orthodontic adhesives when used to bond orthodontic appliances to teeth. Because polymeric fillers are generally softer than inorganic fillers, these adhesives are easier to remove from the tooth than conventional adhesives after debonding an orthodontic appliance. Embodiments of the invention include both self-curing and two-part adhesives, packaged adhesive-coated orthodontic appliances, and methods for removing a cured adhesive from a tooth surface.
Abstract:
A method of preparing zirconia-containing nanoparticles and a method of preparing a composite material that includes the zirconia-containing nanoparticles are provided. A method of treating a zirconium carboxylate salt solution to remove alkali metal ions and alkaline earth ions is provided. The treated solution can be used as a feedstock to prepare the zirconia-containing nanoparticles. Additionally, a continuous hydrothermal reactor system is provided that can be used, for example, to prepare the zirconia-containing nanoparticles.