Abstract:
A fiber bed assembly used to remove aerosols and/or wetted soluble solids from a moving gas stream includes a fiber bed support and a fiber bed supported by the fiber bed support so that the gas stream passes through the fiber bed moving from an upstream space to a downstream space with respect to the fiber bed. A re-entrainment control device is located within a downstream space defined by the fiber bed so that at least a portion of the gas stream passes through the re-entrainment control device. The re-entrainment control device is shaped to change the direction of the average flow path of the gas stream as the gas stream passes through the re-entrainment control device so as to cause aerosols and/or wettable solids contained therein to be separated from the gas stream by inertial force. A re-entrainment control device and method of use are also disclosed.
Abstract:
The present invention relates generally to catalysts comprising ruthenium oxide and to processes for catalyzing the oxidation and conversion of sulfur dioxide (SO 2 ) to sulfur trioxide (SO 3 ) using such catalysts. SO 2 at low concentrations in process gas streams can be effectively oxidized to SO 3 at relatively low temperatures using the ruthenium oxide catalysts of the present invention. In one application, the ruthenium oxide catalysts are used in the final contact stage for conversion of SO 2 to SO 3 in multiple stage catalytic converters used in sulfuric acid manufacture.
Abstract:
A fiber bed mist eliminator has a fiber bed which is formed of a composite fiber bed collecting media strip including a collection layer which is not subjected to needle punching. The fiber bed can be made very thin while retaining high efficiency in removing small particles of aerosol from a gas stream passing through the fiber bed. The fiber bed collecting media strip lends itself to be applied to the mist eliminator by spirally wrapping the element onto the mist eliminator. The fiber bed collecting media strip can overlap itself to seal at the locations where the fiber element overlaps itself. The fiber bed collecting media strip can be provided to the field in different formats for use in making a mist eliminator fiber bed.
Abstract:
This invention relates to the recovery of energy in the manufacture of sulfuric acid, and more particularly to enhanced recovery of energy from the absorption of wet SO3 in sulfuric acid. The invention is further directed to control of mist formation during SO3 absorption, and of the sulfuric acid mist content of the gas stream leaving the SO3 absorption step in a process wherein SO3 absorption energy is recovered from absorption acid in useful form.
Abstract:
A fiber bed assembly for a mist eliminator that operates at high efficiency and inhibits re-entrained liquid from leaving the mist eliminator. The fiber bed assembly has a construction that facilitates rapid drainage of liquid collected by the fiber bed. A pre-filter media can be employed upstream of the primary collection media to remove larger liquid drops. The pre-filter media can be used in unique combination with other features to reduce liquid re-entrainment, and/or allow increased flow capacity.
Abstract:
A fiber bed mist eliminator has a fiber bed which is formed of a composite fiber bed collecting media strip including a collection layer which is not subjected to needle punching. The fiber bed can be made very thin while retaining high efficiency in removing small particles of aerosol from a gas stream passing through the fiber bed. The fiber bed collecting media strip lends itself to be applied to the mist eliminator by spirally wrapping the element onto the mist eliminator. The fiber bed collecting media strip can overlap itself to seal at the locations where the fiber element overlaps itself. The fiber bed collecting media strip can be provided to the field in different formats for use in making a mist eliminator fiber bed.
Abstract:
A fiber bed mist eliminator has a fiber bed which is formed of a composite fiber bed collecting media strip including a collection layer which is not subjected to needle punching. The fiber bed can be made very thin while retaining high efficiency in removing small particles of aerosol from a gas stream passing through the fiber bed. The fiber bed collecting media strip lends itself to be applied to the mist eliminator by spirally wrapping the element onto the mist eliminator. The fiber bed collecting media strip can overlap itself to seal at the locations where the fiber element overlaps itself. The fiber bed collecting media strip can be provided to the field in different formats for use in making a mist eliminator fiber bed.
Abstract:
A gas inlet system for a wet gas scrubber includes a weir configured to deliver liquid to a scrubbing passage to wet the interior surface of the scrubbing vessel during operation of the gas inlet system. The weir include a weir duct and a weir trough extending at least partially around the weir duct to receive and at least partially fill with liquid during operation of the gas inlet system. The weir trough has an upper trough outlet in liquid communication with the upper weir duct inlet to deliver liquid from the weir trough into the upper weir duct inlet during operation of the gas inlet system. The weir trough also has a lower trough outlet below the upper trough outlet. The lower trough outlet is in liquid communication with the scrubbing passage to deliver liquid from the weir trough toward the scrubbing passage during operation of the gas inlet system.
Abstract:
A contact process for manufacture of sulfuric acid in which the vapor phase heat of formation of sulfuric acid in the sulfur trioxide conversion gas and the heat of absorption of S03 in sulfuric acid is recovered by transfer of heat from the absorption acid to high pressure boiler feed water that is fed to a waste heat boiler where steam is generated by transfer of heat from sulfur dioxide combustion gas.
Abstract:
This invention relates to processes for the selective removal of contaminants from effluent gases. More particularly, various embodiments of the present invention relate to selective removal and recovery of sulfur dioxide from effluent gases in a regenerative sulfur dioxide absorption/desorption process that achieves favorable energy efficiency. Energy is recovered from a wet stripper overhead gas stream produced in the desorption cycle by indirect transfer of heat from the stripper gas to a cooling medium and used to generate steam for use in stripping contaminants from the absorption liquor. The absorption zone may optionally be cooled to enhance the capacity of the absorption medium for absorption of a contaminant gas, thereby lowering the volume of absorption medium and contaminant-enriched absorption liquor that must be pumped, handled, heated and cooled in the absorption/desorption cycle.