Abstract:
The present invention is a collapsible fluid container for handling liquid. The collapsible fluid container has an interior volume (46) for storing the liquid, which defines a main chamber (50) and an auxiliary chamber (52) connected to the main chamber (50). The auxiliary chamber (52) is positioned to receive a substance. A fitment (48) is sealed to the collapsible fluid container (14) that defines a port communicating with the interior volume (46) of the fluid container (14).
Abstract:
Systems are described for delivery of a wide variety of materials in which liquid and gas or vapor states are concurrently present, from a package preferably including a fluid-containing collapsible liner. Headspace gas is removed from a pressure dispensing package prior to liquid dispensation therefrom, and ingress gas is removed thereafter during dispensation operation. At least one sensor senses presence of gas or a gas-liquid interface in a reservoir or gas-liquid separation region. A gas removal system including an integral reservoir, at least one sensor, and at least one flow control elements may be included within a connector adapted to mate with a pressure dispensing package, for highly efficient removal of gas from the liquid being dispensed from the container.
Abstract:
A container liner comprises at least one sheet bounded along portions thereof to form at least one peripheral seam, with the at least one sheet including a first fluoropolymer layer, a barrier film layer, and a third layer bonded along at least peripheral portions thereof. Any of such layers may be peripherally bonded to form a gap or pocket therebetween, or bonded along substantially entire major surfaces thereof. Surface modification may be employed to facilitate bonding of materials having otherwise dissimilar surface energies. The resulting liner is adapted for storing and dispensing high purity chemical reagents, e.g., by placing the liner in an overpack, and applying pressurizing gas to a space between the liner and the overpack for progressive compaction of the liner to dispense its contents.
Abstract:
Fluid storage and dispensing systems and processes involving various devices, structures and arrangements, as well as techniques and methods, for fluid storage and dispensing, including, without limitation, pre-connect verification couplings that are usefully employed in application to fluid storage and dispensing packages, to ensure proper coupling and avoid fluid contamination issues, empty detect systems that are usefully employed for fluid storage and dispensing packages incorporating liners that are pressure-compressed in the fluid dispensing operation, ergonomically enhanced structures for facilitating removal of a dispense connector from a capped vessel, cap integrity assurance systems for preventing misuse of vessel caps, and keycoding systems for ensuring coupling of proper dispense assemblies and vessels. Fluid storage and dispensing systems are described, which achieve zero or near-zero headspace character, and prevent or ameliorate solubilization effects in liquid dispensing from liners in overpack vessels.
Abstract:
The present invention is a manufacturing system including a hazard zone and a non-hazard zone. The system includes a storage device, located in the hazard zone, for electrically storing information. The system further includes a communication device, also located in the hazard zone, for storing information to and reading information from the storage device. In the non-hazard zone, a controller is in electrical communication with the communication device. The controller controls the system based on information read from the storage device by the communication device. To limit electrical energy passing to the communication device, an intrinsic safety barrier located in the non-hazard zone is connected between the communication device and the controller device.
Abstract:
A liquid dispensing method and system for dispensing from a container including an outer container and an inner container, a portion of the inner container occupied by the liquid, a remainder of the inner container occupied by a headspace gas. The system includes a probe having a flow passage therein and a gas passage communicating between the interior of the inner container and an exterior of the outer container. Fluid (such as air or nitrogen) is caused to flow under pressure into a space between inner walls of the outer container and the inner container to force the headspace gas out of the inner container via the gas passage and to force liquid out of the inner container through the flow passage in the probe to a manufactuaring process.
Abstract:
The present disclosure relates to systems and methods which include a material receiving chamber for receiving a material (e.g., fluid containing medium) and an evacuable chamber configured to have vacuum applied thereto, and are configured to eliminate or at least reduce microbubble formation, eliminate or at least reduce unwanted diffusion of gas into the fluid containing medium being stored/dispensed, and/or remove at least a portion of gas or air bubbles entrained or dissolved in the fluid containing medium. Also disclosed are methods for controlling or reducing the concentration of gas in the material which may be subjected to external pressure during storage and/or dispensing.
Abstract:
Fluid storage and dispensing systems and processes involving various devices, structures and arrangements, as well as techniques and methods, for fluid storage and dispensing, including, without limitation, pre-connect verification couplings that are usefully employed in application to fluid storage and dispensing packages, to ensure proper coupling and avoid fluid contamination issues, empty detect systems that are usefully employed for fluid storage and dispensing packages incorporating liners that are pressure-compressed in the fluid dispensing operation, ergonomically enhanced structures for facilitating removal of a dispense connector from a capped vessel, cap integrity assurance systems for preventing misuse of vessel caps, and keycoding systems for ensuring coupling of proper dispense assemblies and vessels. Fluid storage and dispensing systems are described, which achieve zero or near-zero headspace character, and prevent or ameliorate solubilization effects in liquid dispensing from liners in overpack vessels.
Abstract:
A material supply system including a container defining an interior volume for holding the material, such container including a dispense opening therein, a dip tube for dispensing the material from the container, and a fitment mounted in the opening of the container. The fitment in one implementation includes at least two port openings therein, through one of which the dip tube extends into the interior volume of the container, and with another of the at least two port openings being adapted for one or more of (i) filling the container, (ii) venting the container, (iii) recirculation of material during dispensing and (iv) flow of a pressurized medium into the interior volume to assist the dispensing. The container can be of a bag-in-drum or a bag-in-can type. A liner with multiple fitments may be employed. The container in another implementation is fabricated with damping structure, e.g., vibrational damping structure, to reduce susceptibility of the container to adverse vibrational and resonant frequency effects.
Abstract:
Fluid supply systems for storage and dispensing of chemical reagents and compositions, e.g., high purity liquid reagents and chemical mechanical polishing compositions used to manufacture microelectronic device products, having capability for detection of an empty or near-empty condition when the contained liquid is at or approaching depletion during dispensing operation. Fluid delivery systems employing empty detect arrangements are described, including pressure transducer monitoring of dispensed material intermediate the supply package and a servo-hydraulic dispense pump, or monitoring of dispenser chamber replenishment times in a dispenser being replenished on a cyclic schedule to flow material from the dispenser to a downstream tool utilizing the dispensed material.