Abstract:
A shippable liquid storage and dispensing apparatus includes a collapsible liner arranged within a container, with a dispense head coupled to the container, suitable for handling oxygen- and moisture-sensitive materials. The dispense head includes a pressurization gas passage, a pressurization gas valve, a liquid passage, a liquid valve, a liner gas passage, and a liner gas valve, wherein each valve may have an associated quick connect fitting. The dispense head remains attached to the container during inert gas purging, liner filling, container shipment, and liquid dispensing. Pressurized inert gas may be maintained in the liner overlying liquid-containing material during shipment of the coupled dispense head and container. The container may have an extended chime to provide a protective zone that contains the entirety of the dispense head.
Abstract:
Systems are described for delivery of a wide variety of materials in which liquid and gas or vapor states are concurrently present, from a package preferably including a fluid-containing collapsible liner. Headspace gas is removed from a pressure dispensing package prior to liquid dispensation therefrom, and ingress gas is removed thereafter during dispensation operation. At least one sensor senses presence of gas or a gas-liquid interface in a reservoir or gas-liquid separation region. A gas removal system including an integral reservoir, at least one sensor, and at least one flow control elements may be included within a connector adapted to mate with a pressure dispensing package, for highly efficient removal of gas from the liquid being dispensed from the container.
Abstract:
A liquid dispensing method and system for dispensing from a container including an outer container and an inner container, a portion of the inner container occupied by the liquid, a remainder of the inner container occupied by a headspace gas. The system includes a probe having a flow passage therein and a gas passage communicating between the interior of the inner container and an exterior of the outer container. Fluid (such as air or nitrogen) is caused to flow under pressure into a space between inner walls of the outer container and the inner container to force the headspace gas out of the inner container via the gas passage and to force liquid out of the inner container through the flow passage in the probe to a manufactuaring process.
Abstract:
A container for holding and dispensing liquid having a container wall comprising a rigid portion that dimensionally defines the container, a liner portion disposed within the container adjacent to the rigid portion, and an adhesive layer disposed between the rigid portion and the liner portion. The adhesive layer removably secures the liner portion to the rigid portion such that the liner portion is capable of being separated from the rigid portion and collapsed within the container, for dispensing the liquid.
Abstract:
The present disclosure, in one embodiment, relates to a liner-based assembly having an overpack and a liner disposed within the overpack. The liner may be formed by blow molding a liner preform within the overpack to form a blow molded liner substantially conforming to the interior of the overpack and generally forming an interface with an interior of the overpack. The present disclosure, in another embodiment, relates to a liner-based assembly including a blow-molded overpack comprised of polyethylene terephthalate, a blow-molded liner disposed within the overpack, the liner comprised of a polymer material, wherein the overpack and liner have a combined wall thickness of about 0.3 mm or less, and a base cup configured to at least partially surround an exterior of the overpack. In some embodiments, the liner has a volume of up to about 4.7 liters and an empty weight of between about 260-265 grams.
Abstract:
The present disclosure relates to novel and advantageous connector assemblies for use with a liner-based assembly. In one embodiment, a connector assembly for use with a liner-based assembly can include a pressure port, a dispense port, a headspace removal port, and a locking mechanism. The pressure port can be adapted for connection to a pressure source. The dispense port can be adapted for fluid communication with a source of material to be dispensed from the liner-based assembly. The headspace removal port may be configured for removing a gas from the liner-based assembly. The locking mechanism may be used for locking the connector to the liner-based assembly when contents therein are under pressure. In some embodiments, the dispense port and headspace removal port may be operably coupled providing a flow path for recirculation of the contents within a liner of the liner-based assembly.
Abstract:
Systems and methods for delivering fluid-containing feed materials to process equipment are disclosed. A liner-based pressure dispensing vessel is subjected to filling by application of vacuum between the liner and overpack. Multiple feed material flow controllers of different calibrated flow ranges may be selectively operated in parallel for a single feed material. Feed material blending and testing for scale-up may be performed with feed materials supplied by multiple liner-based pressure dispensing containers. A gravimetric system may be used to determine concentration of at least one component of a multi-component solution or mixture.
Abstract:
Fluid storage and dispensing systems and processes involving various devices, structures and arrangements, as well as techniques and methods, for fluid storage and dispensing, including, without limitation, pre-connect verification couplings that are usefully employed in application to fluid storage and dispensing packages, to ensure proper coupling and avoid fluid contamination issues, empty detect systems that are usefully employed for fluid storage and dispensing packages incorporating liners that are pressure-compressed in the fluid dispensing operation, ergonomically enhanced structures for facilitating removal of a dispense connector from a capped vessel, cap integrity assurance systems for preventing misuse of vessel caps, and keycoding systems for ensuring coupling of proper dispense assemblies and vessels. Fluid storage and dispensing systems are described, which achieve zero or near-zero headspace character, and prevent or ameliorate solubilization effects in liquid dispensing from liners in overpack vessels.
Abstract:
A fluid storage and dispensing package, including a rigid overpack defining an interior volume, a liner disposed in the interior volume of the overpack to hold liquid medium, and a positional fixation structure arranged to restrain movement of the liner when holding liquid medium, wherein the positional fixation structure is not in contact with liquid medium when liquid medium is contained in the liner. Such package, and associated packaging method, preferably involves zero-headspace containment of the liquid or liquid-containing material, and is particularly advantageous in application to storage and dispensing of film-forming colloidal silica-based chemical mechanical polishing (CMP) compositions, with respect to suppressing the presence of microbubbles and unwanted particles.