Abstract:
An article and thermoplastic composition including polycarbonate, a polysiloxane-polycarbonate and an x-ray detectable or metal detectable agent having good magnetic permeability and/or electrical conductivity wherein the composition may be used in articles for food preparation. The thermoplastic compositions are useful in forming molds for manufacturing a food product, such as chocolate molds.
Abstract:
A composition comprising compound of formula: (I), a process for preparing the composition comprising compound of formula: (I), methods of authentication for an article comprising compound of formula: (I) or compound of formula: (II), authentication technology for polymer based articles comprising compound of formula: (I) or formula: (II), methods of facilitating such authentication and method of making articles capable of authentication.
Abstract:
A method of marking a thermoplastic article can comprise: combining a thermoplastic with a light-marking additive to form a composition, forming the composition into an article having a maximum optical absorption wavelength; and illuminating, at a marking wavelength, at least a portion of the article with a device having a power of less than or equal to about 200 mW, to form a light-mark. The light-mark can have a size, as measured along a major axis, of greater than or equal to about 10 micrometers. The light-mark can also have a mark absorption wavelength that is greater than or equal to about ±100 nm of the maximum optical absorption wavelength, and can have a spectral absorption curve.
Abstract:
An optical article for being transformed from a pre-activated state of functionality to an activated state of functionality is provided. The optical article includes a convertible element disposed in or proximate to the optical article and being responsive to an external stimulus. The convertible element for irreversibly altering the optical article from the pre-activated state of functionality to the activated state of functionality upon interaction with the external stimulus.
Abstract:
Disclosed herein are battery-powered devices capable of authenticating batteries. In one embodiment, a device comprises: a battery, an excitation source, a photodetector, and an operating system. The device is capable of at least partially being powered by the battery. The excitation source is capable of producing radiation and disposed so that the radiation can contact a surface of the battery. The photodetector is capable of detecting radiation from the battery. The operating system is capable of determining whether or not the battery is an authentic battery for that device.
Abstract:
A storage medium can comprise a substrate, a reflective layer disposed on a side of the substrate, and data. The substrate can comprise a thermoplastic and a light-mark formed from at least a portion of light-marking additive mixed with the thermoplastic, wherein an optical property of the light-marking additive at an optical drive read wavelength can change due to being contacted with a mark wavelength. A method for using a storage medium can comprise directing a reading device to detect an inspection area of the storage medium, and wherein the inspection area on an authentic medium has a light-mark in a substrate of the storage medium that forms an optically induced signature. The optically induced signature can be converted to a digital identification signature and the digital identification signature can be verified for authenticity.
Abstract:
A thermoplastic polymer composition comprises a cyanophenyl endcapped polycarbonate, a potassium diphenyl sulphon-3-sulphonate; and brominated polycarbonate. In some embodiments, when the thermoplastic polymer composition is in the form of a 3 mm thick extruded sheet, the sheet has a smoke density of less than 200 at an exposure period of 240 seconds in accordance with the smoke density test as set forth in ASTM E662-06, and has no burning drips on the sheet for a duration of 10 minutes in accordance with the flammability test as set forth in NF-P-92-505.
Abstract:
A compound of Formula (I): wherein R 1 is selected from the group consisting of an aliphatic functionality having 2 to 12 carbons, an aromatic functionality having 3 to 20 carbons, and a cycloaliphatic functionality having 3 to 20 carbons; with the proviso that R 1 is not -C 6 H 5 or -NH-C 10 H 7 ; R 2 and R 3 are independently selected from the group consisting of a hydroxyl group, a halogen atom, an aliphatic functionality having 2 to 12 carbons, an aromatic functionality having 3 to 20 carbons, and a cycloaliphatic functionality having 3 to 20 carbons; X is either an oxygen atom or a sulfur atom; 'n' has a value of 0 to 4; and 'm' has a value of 0 to 3.
Abstract:
A compound of Formula (I): wherein R 1 is selected from the group consisting of an aliphatic functionality having 2 to 12 carbons, an aromatic functionality having 3 to 20 carbons, and a cycloaliphatic functionality having 3 to 20 carbons; with the proviso that R 1 is not -C 6 H 5 or -NH-C 10 H 7 ; R 2 and R 3 are independently selected from the group consisting of a hydroxyl group, a halogen atom, an aliphatic functionality having 2 to 12 carbons, an aromatic functionality having 3 to 20 carbons, and a cycloaliphatic functionality having 3 to 20 carbons; X is either an oxygen atom or a sulfur atom; 'n' has a value of 0 to 4; and 'm' has a value of 0 to 3.
Abstract translation:式(I)的化合物:其中R 1选自具有2至12个碳的脂族官能团,具有3至20个碳的芳族官能团和具有3至20个碳原子的脂环族官能团 20个碳; 条件是R 1不是-C 6 H 5或-NH-C 10 H > 7 SUB>; R 2和R 3独立地选自羟基,卤素原子,具有2至12个碳的脂族官能团,芳族官能团具有3至 碳原子数为20,碳原子数为3〜20的脂环族官能团; X是氧原子或硫原子; 'n'的值为0到4; “m”的值为0〜3。
Abstract:
An article comprising the compound of Formula (I) wherein R 1 is selected from the group consisting of an aliphatic functionality having 1 to 12 carbons, an aromatic functionality having 3 to 20 carbons, and a cycloaliphatic functionality having 3 to 20 carbons; R 2 and R 3 are independently selected from the group consisting of a hydroxyl group, a halogen atom, an aliphatic functionality having 1 to 12 carbons, an aromatic functionality having 3 to 20 carbons, and a cycloaliphatic functionality having 3 to 20 carbons; Y is either an oxygen atom or a sulfur atom; "n" has a value of 0 to 4; and "m" has a value of 0 to 3.