Abstract:
Methods and devices for treating excess mucus accumulation in mammals by administering gaseous inhaled nitric oxide as a mucolytic agent or expectorant are provided. Delivery of gaseous nitric oxide can be made nasally or orally and is preferably substantially coincident with inhalation of the mammal or based on a synchronous parameter of the mammal's respiratory cycle. Varying therapeutic profiles may be used for the delivery of gaseous nitric oxide depending on the severity of the excess mucus accumulation. Parameters for the therapeutic profiles may include flow rate of nitric oxide containing gas, duration of administration of nitric oxide containing gas, number of breaths for which nitric oxide containing gas is to be administered, and concentrations of therapeutic NO delivered to the airways.
Abstract:
The invention relates to uses of nitric oxide gas to inactivate any whole, part or subunit of a microbe, such as a virus. Such an inactivated or attenuated virus after treatment with NO gas may be used in formulations for a vaccine. Nitric oxide may be administered directly to create a vaccine through in vitro and/or in situ or by direct administration in vivo. Also provided are methods for treating patients with viral infections through the inhalation of nitric oxide gas.
Abstract:
A method of topically treating the respiratory tract of a mammal with nitric oxide exposure includes the steps of providing a source of nitric oxide containing gas and delivering the nitric oxide containing gas nasally to the upper respiratory tract of the mammal. Also provided are several designs for a nasal delivery device for the controlled nasal deliver the nitric oxide containing gas.
Abstract:
A method and corresponding device are described for combating microbes and infections by delivering intermittent high doses of nitric oxide to a mammal for a period of time and which cycles between high and low concentration of nitric oxide gas. The high concentration of nitric oxide is preferably delivered intermittently for brief periods of time that are interspersed with periods of time with either no nitric oxide delivery or lower concentrations of nitric oxide. The method is advantageous because at higher concentration, nitric oxide gas overwhelms the defense mechanism of pathogens that use the mammalian body to replenish their thiol defense system. A lower dose or concentration of nitric oxide gas delivered in between the bursts of high concentration nitric oxide maintains nitrosative stress pressure on the pathogens and also reduces the risk of toxicity of nitric oxide gas.