Abstract:
Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k 1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.
Abstract:
A first device that may include a short tolerant structure, and methods for fabricating embodiments of the first device, are provided. A first device may include a substrate and a plurality of OLED circuit elements disposed on the substrate. Each OLED circuit element may include a fuse that is adapted to open an electrical connection in response to an electrical short in the pixel. Each OLED circuit element may comprise a pixel that may include a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. Each of the OLED circuit elements may not be electrically connected in series with any other of the OLED circuit elements.
Abstract:
Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k 1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.
Abstract:
Systems and methods for the design and fabrication of OLEDs (100,200), including high-performance large-area OLEDs (300), are provided. Variously described fabrication processes may be used to deposit and pattern bus lines (320,510,800A,800B,800C,2410) and/or insulators (2420) using vapor deposition such as vacuum thermal evaporation (VTE) through a shadow mask (810), and may avoid multiple photolithography steps. Bus lines (320,510,800A,800B,800C, 2410) and/or insulators (2420) may be formed with a smooth profile and a gradual sidewall transition. Such smooth profiles may, for example, reduce the probability of electrical shorting at the bus lines (320,510,800A,800B, 800C,2410). Other vapor deposition systems and methods may include, among other, sputter deposition, e-beam evaporation and chemical vapor deposition (CVD). A final profile of the bus line (320,510,800A,800B,800C,2410) and/or insulator (2420) may substantially correspond to the profile as deposited. A single OLED device (100,200,300) may also be formed with relatively large dimension, e.g. a shortest dimension in plan view of greater than approximately 2 cm, or an active area (2430) greater than approximately 10 cm 2 plan view.
Abstract:
Devices comprising multiple flexible substrates bearing OLEDs are provided. The flexible substrates are interconnected, and the properties of the substrates and the interconnections provide the shape of the device.
Abstract:
A first device that may include a short tolerant structure, and methods for fabricating embodiments of the first device, are provided. A first device may include a substrate and a plurality of OLED circuit elements disposed on the substrate. Each OLED circuit element may include a fuse that is adapted to open an electrical connection in response to an electrical short in the pixel. Each OLED circuit element may comprise a pixel that may include a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. Each of the OLED circuit elements may not be electrically connected in series with any other of the OLED circuit elements.
Abstract:
An organic light emitting device (OLED) configured to emit light uniformly over an emitting area and a method of making the OLED are disclosed. The OLED contains a substrate, an electrode disposed over the substrate, and a light-emitting structure containing an organic material. The light-emitting structure is in contact with the electrode. The OLED contains an electrically conductive cover substantially overlaying the electrode and an electrically conductive connecting material disposed between the electrically conductive cover and the electrode. The electrically conductive material provides an electrically conductive path connecting the electrically conductive cover and the electrode. The electrically conductive cover increases the overall uniformity of emitted light from the OLED.
Abstract:
A light emitting device with high light emission uniformity is disclosed. The device contains a first electrically conductive layer having a positive polarity and an electrically conductive uniformity enhancement layer in contact with the first electrically conductive layer. The device also contains a second electrically conductive layer having a negative polarity and a light-emitting structure situated between the first and the second electrically conductive layers. The light-emitting structure contains an organic material in direct contact with the second electrically conductive layer. The uniformity enhancement layer transmits essentially all wavelengths of light emitted by the light-emitting structure. Compared to devices lacking a uniformity enhancement layer, the device exhibits higher spatial uniformity in luminance and in color spectrum.