Abstract:
A method of configuring a biomimetic mechanical joint for the efficient movement of a support member about a pivot device. The method includes providing a first fractional actuator and a second fractional actuator being operable with the support member and the pivot device, sizing the first fractional actuator for rated operation at a first boundary condition, and sizing the second fractional actuator so that the first and second fractional actuators, when recruited in combination, are rated for operation at a second boundary condition.
Abstract:
A system comprising a housing containing a signal generator coupled to an antenna and a dielectric material disposed about the antenna. The device is adapted to generate and direct a plurality of signals towards the heart of the person and measure a magnitude of a signal returned from the heart. The device further comprises a processor to compare differences between a magnitude of a signal propagated and the magnitude of the signal returned off the heart and determine a signal frequency having a maximum return loss value based on those differences. The processor also estimates a change in the amplitude of motion of a portion of a wall of the heart based on the differences between the magnitude of the signal propagated by the device and the magnitude of the signal returned off of the portion of the heart.
Abstract:
An unmanned robotic vehicle (10) is capable of sensing an environment at a location remote from the immediate area of the vehicle frame (18). The unmanned robotic vehicle (10) includes a retractable appendage (14) with a sensing element (16). The sensing element can include a camera, chemical sensor, optical sensor, force sensor, or the like.
Abstract:
A method for manufacturing a complex structure from a two-dimensional layout, the method comprising: (a) obtaining a support plate (40) having a pre-determined, patterned recess (48) formed in a surface thereof; (b) depositing a first series of individual flexible interconnects (70) into the recess, the flexible interconnects being aligned parallel to one another in a common plane and supported by the support plate; (c) adhering, with adhering means, at least one rigid member (102) to each of the flexible interconnects of the first series; (d) adhering, with adhering means, a second series of individual flexible interconnects (132) to the rigid members to form a plurality of stations, wherein each of the second series of flexible interconnects is adhered to two rigid members of adjacent flexible interconnects of the first series, the flexible interconnects of the second series being formed perpendicular to the flexible interconnects of the first series; (e) curing the adhering means to form an assembled, layered structure; (f) removing the layered structure from the support plate; and (g) folding, systematically, the layered structure on itself and causing at least some of the stations to be supported about a central spine (160) in a segmented manner.
Abstract:
A miniature quantum fluid transfer system configured to regulate the flow rate of a fluid by allowing passage of very small, discrete increments of fluid through the valve including a valve body having at least one inlet to receive fluid and at least one outlet to release fluid. The quantum fluid transfer system includes a valve rod movably disposed in a first chamber in the valve body. The valve rod has a plurality of fluid passages spaced longitudinally along the valve rod, and the valve rod is movable to align each fluid passage with an inlet or outlet port in the first chamber to allow fluid to flow through selected inlet or outlet ports corresponding to selected fluid passages. The quantum fluid transfer system has a plug movably disposed in a second chamber in the valve body. The plug is movable between a first end and a second end of the second chamber, and moves toward the first or second end when a volume of fluid enters the second chamber from the first chamber at the other of the first or second end. The plug pushes a corresponding volume of fluid out of the second chamber at the end opposite the end the fluid entered.
Abstract:
The present invention describes, generally, a method and system for controlling the dynamics of an actuatable load functioning or operable within a servo or servo-type system, wherein the dynamics of the load are controlled by way of a unique asymmetric pressure control valve (10) configured to provide intrinsic pressure regulation. The asymmetric pressure control valve (10), which may be referred to as a dynamic pressure regulator because of its capabilities, utilizes different sized free floating spools that are physically independent of one another and freely supported in interior cavities of respective corresponding different sized valving components that make up the valve body (12) to regulate the pressures acting within the overall system between the control or pilot pressure and the load or load pressure. The dual spools of the pressure control valve (10), although physically independent of one another, function in cooperation with one another in an attempt to maintain a state of equilibrium in the system, namely to keep pressure acting on or within the actuator (the load pressure), or the feedback pressure corresponding to the load pressure, the same as the control or pilot pressure. Moreover, pressure regulation and control is intrinsic to the asymmetric pressure control valve (10) because of the configuration and function of the dual spools and the feedback system acting on the spools, thus eliminating the need for electronically or mechanically user controlled systems.
Abstract:
Varying modes of movement of a robotic crawler are provided by using a variable mapping from high-level (operator input) primitives into low-level primitives. The mapping is a function of environmental data sensed by the robotic crawler enabling the movement mode to be adapted to the environment.
Abstract:
Methods and devices for a miniature, ultra-low power impact recorder (24) for detecting, quantifying and recording the energy of an explosive blast or ballistic projectile impact. In one embodiment, the impact recorder can included a sensor (30) comprised of an array (32) of electromechanical resonators (34) that is sensitive to the vibrations produced in selected, discrete frequency ranges that approximate the spectral signature characteristics of the Shockwave resulting from the ballistic impact event (54), even after traveling through impacted material or body tissues.
Abstract:
A serpentine robotic crawler capable of multiple movement moves is disclosed. The serpentine robotic crawler includes a plurality of frame units, coupled together by at least one actuated linkage. Each frame unit includes a continuous track, enabling forward movement of the serpentine robotic crawler. The at least one actuated linkage has a number of degrees of movement freedom, enabling the serpentine robotic crawler to adopt a variety of poses.
Abstract:
A tracked robotic crawler capable of multiple movement moves is disclosed. In. one embodiment, the tracked robotic crawler (10) includes at least one frame unit (12), the frame unit having a continuous track (14) rotatably coupled thereto. Disposed on the at least one frame unit is at least one articulated arm (18a, 18b), the arm being movable relative to the frame unit in at least one dimension. The articulated arm helps to improve mobility of the tracked robotic crawler in various environments.