Abstract:
A method for separating target molecules or particles from a fibrinogen containing sample comprises: (a) trapping the said target molecules or particles in a fibrin network by converting at least partially the fibrinogen contained in the sample into fibrin; (b) retracting the said fibrin network to form a fibrin clot; (c) separating the said fibrin clot from the surrounding sample medium,
Abstract:
A method for separating target molecules or particles from a fibrinogen containing sample comprises: (a) trapping the said target molecules or particles in a fibrin network by converting at least partially the fibrinogen contained in the sample into fibrin; (b) retracting the said fibrin network to form a fibrin clot; (c) separating the said fibrin clot from the surrounding sample medium,
Abstract:
A method and an apparatus for transporting magnetic or magnetisable microbeads immersed in a liquid contained in a capillary tube having a length symmetry axis which defines an axial direction, the transporting being effected in the absence of a static magnetic field in the capillary tube.
Abstract:
Bio-functionalized magnetic particles have a non-magnetic material matrix which supports core/shell magnetic elements composed from a ferromagnetic core material and a shell material. The shell material can be chosen either among an antiferromagnetic material, a ferromagnetic material of a kind different from the core ferromagnetic material or a metal material. By a proper choice of materials and dimension tuning of both the core and the shell as well as the amount and the concentration of the magnetic elements within the non- magnetic matrix, the bio-functionalized magnetic particles is tailored to exhibit an enhanced magnetic energy. When subjected to an alternating magnetic field, the magnetic particles exhibit specific rotational dynamics in correspondence with the amplitude and the frequency of the applied magnetic filed. Aggregation structures of the magnetic particles are controlled and manipulated by the alternating magnetic field. The magnetic particles are functionalized by specific ligands for the probing and manipulating of biomolecules and chemical substances.
Abstract:
A method of mixing magnetic particles (3) in a reaction chamber (2) that is part of a microfluidic device and that contains the said particles in suspension, comprises the steps: (a) providing an electromagnetic means (1,1 ',6, 7) to generate magnetic field sequences having polarity and intensity that vary in time and a magnetic field gradient that covers the whole space of the said reaction chamber (2); (b) applying a first magnetic field sequence to separate or confine the particles (3) so the particles occupy a sub-volume in the volume of the reaction chamber (2); (c) injecting a defined volume of the said reagent in the reaction chamber; and (d) applying a second magnetic field sequence to leads the particles (3) to be homogenously distributed and dynamically moving over a substantial portion of the whole reaction chamber volume.
Abstract:
A method of mixing magnetic particles (3) in a reaction chamber (2) that is part of a microfluidic device and that contains the said particles in suspension, comprises the steps: (a) providing an electromagnetic means (1,1 ',6, 7) to generate magnetic field sequences having polarity and intensity that vary in time and a magnetic field gradient that covers the whole space of the said reaction chamber (2); (b) applying a first magnetic field sequence to separate or confine the particles (3) so the particles occupy a sub-volume in the volume of the reaction chamber (2); (c) injecting a defined volume of the said reagent in the reaction chamber; and (d) applying a second magnetic field sequence to leads the particles (3) to be homogenously distributed and dynamically moving over a substantial portion of the whole reaction chamber volume.
Abstract:
Bio-functionalized magnetic particles have a non-magnetic material matrix which supports core/shell magnetic elements composed from a ferromagnetic core material and a shell material. The shell material can be chosen either among an antiferromagnetic material, a ferromagnetic material of a kind different from the core ferromagnetic material or a metal material. By a proper choice of materials and dimension tuning of both the core and the shell as well as the amount and the concentration of the magnetic elements within the non- magnetic matrix, the bio-functionalized magnetic particles is tailored to exhibit an enhanced magnetic energy. When subjected to an alternating magnetic field, the magnetic particles exhibit specific rotational dynamics in correspondence with the amplitude and the frequency of the applied magnetic filed. Aggregation structures of the magnetic particles are controlled and manipulated by the alternating magnetic field. The magnetic particles are functionalized by specific ligands for the probing and manipulating of biomolecules and chemical substances.
Abstract:
A method for separating target molecules or particles from a fibrinogen containing sample comprises: (a) trapping the said target molecules or particles in a fibrin network by converting at least partially the fibrinogen contained in the sample into fibrin; (b) retracting the said fibrin network to form a fibrin clot; (c) separating the said fibrin clot from the surrounding sample medium,
Abstract:
A device for manipulating and mixing magnetic particles (3) in a surrounding liquid medium, comprises at least one couple of magnetic poles (1,1') facing each other across a gap, the facing poles diverging from a narrow end of the gap to a large end of the gap, the poles (1,1') forming part of an electromagnetic circuit and being arranged to provide a magnetic field gradient in the gap region; and a reaction chamber (2) that is a part of a fluidic network for containing the said magnetic particles in suspension and placed in the gap of the said electromagnets poles (1,1'). The reaction chamber (2) preferably has at least one part which has a diverging cavity, arranged co-divergently in the diverging gap between the poles.
Abstract:
A device for transporting magnetic or magnetisable microbeads (25) in a capillary chamber (14) comprises a permanent magnet (10) or an electromagnet (11) for subjecting the capillary chamber to a substantially uniform magnetic field, to apply a permanent magnetic moment to the microbeads (25). At least one planar coil (22) and preferably an array of overlapping coils are located adjacent to the capillary chamber (14) for applying a complementary magnetic field on the microbeads parallel or antiparallel to said substantially uniform magnetic field, to drive the microbeads. An arrangement is provided for switching the current applied to the coil(s) (22) to invert the field produced thereby, to selectively apply an attractive or repulsive driving force on the microbeads (25). The device is usable to transport microbeads for performing chemical and biochemical reactions or assay, as is done for instance in clinical chemistry assays for medical diagnostic purposes.