Abstract:
Process for recycling a support substrate (25) of a material substantially transparent to at least a wavelength of electromagnetic radiation, said process comprising: a) providing an initial substrate (10); b) forming (S1) an intermediate layer (15) on a bonding face of the support substrate (25) having an initial roughness, said intermediate layer (15) being of a material substantially transparent to at least a wavelength of electromagnetic radiation, c) forming (S2) an electromagnetic radiation absorbing layer (24) either on the bonding face (10b) of the initial substrate (10), and/or on the intermediate layer (15), d) bonding (S3) the initial substrate (10) to the support substrate (25) via the electromagnetic radiation absorbing layer (24), and e) carrying out irradiation (S4) of the electromagnetic radiation absorbing layer (24) through the support substrate (25) and the intermediate layer to induce separation of the support substrate (25) from the initial substrate.
Abstract:
The invention relates to a method for fabricating a semiconductor substrate comprising the steps of: providing a silicon on insulator type substrate comprising a base, an insulating layer and a first semiconductor layer, doping the first semiconductor layer to thereby obtain a modified first semiconductor layer, and providing a second semiconductor layer with a different dopant concentration than the modified first semiconductor layer over, in particular on, the modified first semiconductor layer. With this method, an improved dopant concentration profile can be achieved through the various layers which makes the substrates in particular suitable for optoelectronic applications.
Abstract:
The invention relates to a method for recycling a substrate with a step-like residue in a first region of its surface, in particular along the edge of the substrate, which protrudes with respect to the surface of a remaining second region of the substrate, and wherein the first region comprises a modified zone, in particular an ion implanted zone, essentially in a plane corresponding to the plane of the surface of the remaining second region of the substrate and/or chamfered towards the edge of the substrate. To prevent the negative impact of contaminants in subsequent laminated wafer fabricating processes, the recycling method comprises a material removal step which is carried out such that the surface of the substrate in the first region is lying lower than the level of the modified zone before the material removal. The invention also relates to a laminated wafer fabricating method using the recycled substrate and to a recycled substrate in which the surface of a first region lies lower than the surface of the second region.
Abstract:
This invention relates to a process for treatment of a multi-layer wafer with materials having differential thermal characteristics, the process comprising a high temperature heat treatment step that can generate secondary defects, characterised in that this process includes a wafer surface preparation step before the high temperature heat treatment step.
Abstract:
L'invention concerne un procédé de réalisation d'une couche mince (104) en matériau semi-conducteur sur un substrat (107), dit substrat final, comportant : - la formation de ladite couche en matériau semi-conducteur, sur un support, dit support initial (101), - l'assemblage de la couche mince (104) et du substrat final (107), par collage métallique, - la séparation mécanique du support initial (101) et de la couche mince (107). On obtient ainsi un substrat intermédiaire qui peut être utilisé pour la fabrication de divers composants tels que des diodes électroluminescentes ou des diodes laser. Ce procédé permet la réalisation d'une couche mince sur un substrat final à partir d'un substrat de départ qui peut être recyclé grâce à un démontage mécanique non destructif.
Abstract:
L'invention concerne un procédé de préparation de surface d'une tranche d'un matériau semi-conducteur destiné à des applications en microélectronique et/ou optoélectronique. Le procédé comprend une étape de recuit du matériau sous atmosphère oxydante et une étape de polissage avec un abrasif à base de particules de silice colloïdale. L'étape de polissage peut être réalisée à l'aide d'une tête de polissage (10), dans laquelle est insérée un substrat (12) en matériau semi-conducteur. Le liquide abrasif est injecté dans la tête, par exemple par un conduit latéral (18). Une pression (20) et un mouvement symbolisé par la flèche (22) sont appliqués à la tête (10) pour effectuer le polissage contre un tissu (14) de polissage. La combinaison de ces deux étapes permet de réaliser un état de surface satisfaisant, notamment dans le cas du carbure de silicium.
Abstract:
A method is described for thinning a structure (200) comprising at least two wafers (201, 202) assembled one with the other, one (202) of the two wafers including channels (203) on its surface (202a) facing the other wafer (201). In order to cause thinning of the structure, a fluid is introduced into the channels (203) in a supercritical state and the fluid is passed from the supercritical state into the gaseous state. The method is also characterized in that the channels (203) do not open to the outside of the structure, the method further comprising forming from the outer surface of the structure, before introducing the fluid in the supercritical state, at least one access opening (204) to the channels (203).
Abstract:
Methods of fabricating relaxed layers of semiconductor materials include forming structures of a semiconductor material overlying a layer of a compliant material, and subsequently altering a viscosity of the compliant material to reduce strain within the semiconductor material. The compliant material may be reflowed during deposition of a second layer of semiconductor material. The compliant material may be selected so that, as the second layer of semiconductor material is deposited, a viscosity of the compliant material is altered imparting relaxation of the structures. In some embodiments, the layer of semiconductor material may comprise a III-V type semiconductor material, such as, for example, indium gallium nitride. Methods of fabricating semiconductor structures and devices are also disclosed. Novel intermediate structures are formed during such methods. Engineered substrates include a plurality of structures comprising a semiconductor material disposed on a layer of material exhibiting a changeable viscosity.
Abstract:
The invention relates to a method of trimming a structure (500) comprising a first wafer (200) bonded to a second wafer (300), the first wafer (200) having a chamfered edge. The method comprises a first step (S4) for trimming the edge of the first wafer (200) carried out by mechanical machining over a predetermined depth (Pd 1 ) in the first wafer. This first trimming step is followed by a second step (S5) for non-mechanical trimming over at least the remaining thickness of the first wafer.
Abstract:
The invention relates to a method for fabricating a mixed orientation substrate comprising the steps of providing a donor substrate with a first crystalline orientation, forming a predetermined splitting area in the donor substrate, providing a handle substrate, in particular of a second crystalline orientation, attaching the donor substrate to the handle substrate and detaching the donor substrate at the predetermined splitting area thereby transferring a layer of the donor substrate onto the handle substrate to form a mixed orientation substrate. In order to cope with stress introduced during ion implantation, a stiffening layer is provided on the donor substrate prior to forming the predetermined splitting area.