Abstract:
Oxide-free, low temperature wafer bonding permits electric current to cross the covalently bonded interface unimpeded by traps, recombination centers and unintentional, defect-induced blocking barriers when interfacial defects are passivated by hydrogen diffused from shallow implants towards the interface. Systems and methods comprising oxide-free, low temperature covalent wafer bonding with passivated interface states are used in various applications requiring reduced interfacial scattering and carrier trapping and efficient charge collection across bonded interfaces.
Abstract:
L'invention concerne un procédé de fabrication d'une couche monocristalline (10), caractérisé en ce qu'il comprend les étapes successives suivantes : - la fourniture d'un substrat donneur (100) comprenant un matériau piézoélectrique de composition ABO 3 , où A est constitué d'au moins un élément parmi : Li, Na, K, H, Ca; B est constitué d'au moins un élément parmi : Nb, Ta, Sb, V; - la fourniture d'un substrat receveur (110), - le transfert d'une couche (102) dite « couche germe » du substrat donneur (100) sur le substrat receveur (110) par collage du substrat donneur sur le substrat receveur de telle sorte que la couche germe (102) se trouve à l'interface de collage puis amincissement du substrat donneur (100) jusqu'à ladite couche germe (102); - la croissance, par épitaxie sur le matériau piézoélectrique ABO 3 de la couche germe (102), d'une couche monocristalline (103) de composition A'B'O 3 , où : A' est constitué d'au moins un des éléments suivants : Li, Na, K, H; B' est constitué d'au moins un des éléments suivants : Nb, Ta, Sb, V; A' est différent de A ou B' est différent de B.
Abstract:
A laser liftoff process is provided. A device layer can be provided on a transfer substrate. Channels can be formed through the device layer such that devices comprising remaining portions of the device layer are laterally isolated from one another by the channels. The transfer substrate can be bonded to a target substrate through an adhesion layer. Surface portions of the devices can be removed from an interface region between the transfer substrate and the devices by irradiating a laser beam through the transfer substrate onto the devices. The laser irradiation decomposes the III-V compound semiconductor material. The channels provide escape paths for the gaseous products (such as nitrogen gas) that are generated by the laser irradiation. The transfer substrate is separated from a bonded assembly including the target substrate and remaining portions of the devices. The devices can include a III-V compound semiconductor material.
Abstract:
Various semiconductor wafers and their methods of fabrication are disclosed. One exemplary process comprises, forming a layer consisting essentially of aluminum nitride on a first wafer. The first wafer includes a substrate. The process also comprises bonding a second wafer to the first wafer. The aluminum nitride layer is interposed between the substrate and the second wafer after the bonding step. The process also comprises separating the first and second wafers to form a semiconductor on insulator (SOI) wafer. The SOI receives a layer of semiconductor material from the second wafer during the separating step. The SOI wafer includes the layer of semiconductor material, the layer consisting essentially of aluminum nitride, and the substrate after the separating step.
Abstract:
A method is provided for preparing semiconductor structure, e.g., a semiconductor on insulator structure, comprising a device layer having a smooth surface. The method provided involves smoothing a semiconductor substrate surface by making use of stress enhanced surface diffusion at elevated temperatures. The purpose of this method is to reach atomic scale surface smoothness (for example, smoothness in the range of between 1.0 and 1.5 angstroms as measured according to root mean square over a 30um X 30um AFM measurement), which is required in advanced (sub 28 nm) CMOS device fabrication.
Abstract translation:提供了一种用于制备半导体结构(例如,绝缘体上半导体结构)的方法,该方法包括具有光滑表面的器件层。 所提供的方法涉及通过在升高的温度下利用应力增强的表面扩散来平滑半导体衬底表面。 该方法的目的是达到原子级表面光滑度(例如,在根据30um X 30um AFM测量的均方根测量的在1.0和1.5埃之间的范围内的光滑度),这是先进的(次28 nm)CMOS器件制造。 p>
Abstract:
L'invention concerne un procédé de traitement d'un film mince (1) transféré d'un substrat donneur vers un substrat récepteur par fracture au niveau d'une zone du substrat donneur fragilisée par implantation ionique d'hydrogène, le procédé comprenant une étape d'amincissement du film mince transféré (1) pour éliminer une région de défauts résiduels (11) induits par l'implantation ionique d'hydrogène, et étant caractérisé en ce qu'il comprend, directement après la fracture et avant l'étape d'amincissement du film mince transféré, une étape de formation d'une couche de piégeage d'hydrogène (13) dans la région de défauts résiduels du film mince transféré (1). Un traitement thermique peut être mis en œuvre après formation de la couche de piégeage d'hydrogène et avant amincissement du film mince.
Abstract:
The disclosed method is suitable for producing a semiconductor-on-insulator structure, such as a Ge(Si)-on-insulator structure or a Ge-on-insulator structure. According to the method, a multilayer comprising alternating pairs of layers, comprising a layer of silicon and a layer of germanium optionally with silicon is deposited on a silicon substrate comprising a germanium buffer layer. The multilayer is completed with a silicon passivation layer. A cleave plane is formed within the multilayer, and the multilayer structure is bonded to a handle substrate comprising a dielectric layer. The multilayer structure is cleaved along the cleave plane to thereby prepare a semiconductor-on-insulator structure comprising a semiconductor handle substrate, a dielectric layer, a silicon passivation layer, and at least a portion of the alternating pairs of layers, comprising a layer of silicon and a layer of germanium optionally with silicon.
Abstract:
Donor structures having a germanium buffer layer for preparing silicon-germanium-on-insulator structures by layer transfer are disclosed. Bonded structures and methods for preparing silicon-germanium-on-insulator structures by a layer transfer method are also disclosed.