Abstract:
A pressure sensor is described with sensing elements electrically and physically isolated from a pressurized medium. An absolute pressure sensor has a reference cavity, which can be at a vacuum or zero pressure, enclosing the sensing elements. The reference cavity is formed by bonding a recessed cap wafer with a gauge wafer having a micromachined diaphragm. Sensing elements are disposed on a first side of the diaphragm. The pressurized medium accesses a second side of the diaphragm opposite to the first side where the sensing elements are disposed. A spacer wafer may be used for structural support and stress relief of the gauge wafer. In one embodiment, vertical through-wafer conductive vias are used to bring out electrical connections from the sensing elements to outside the reference cavity. In an alternative embodiment, peripheral bond pads on the gauge wafer are used to bring out electrical connections from the sensing elements to outside the reference cavity
Abstract:
A Micro-Electro-Mechanical System (MEMS) pressure sensor is disclosed, comprising a gauge wafer, comprising a micromachined structure comprising a membrane region and a pedestal region, wherein a first surface of the micromachined structure is configured to be exposed to a pressure medium that exerts a pressure resulting in a deflection of the membrane region. The gauge wafer also comprises a plurality of sensing elements patterned on the electrical insulation layer on a second surface in the membrane region, wherein a thermal expansion coefficient of the material of the sensing elements substantially matches with a thermal expansion coefficient of the material of the gauge wafer. The pressure sensor comprises a cap wafer coupled to the gauge wafer, which includes a recess on an inner surface of the cap wafer facing the gauge wafer that defines a sealed reference cavity that encloses and prevents exposure of the sensing elements to an external environment.
Abstract:
A temperature compensated CMOS RC oscillator circuit changes the source- bulk voltage to stabilize the MOSFET's threshold voltage variation over temperature using a resistor and temperature-correlated bias current. The MOSFET's source is connected to ground through a resistor. This temperature-correlated bias current also runs through this resistor. When temperature increases, the bias current also increases, which increases the MOSFET's source-bulk voltage. The increased source-bulk voltage helps to stabilize the threshold voltage of MOSFET at high temperature. A power saving logic is also embedded in this oscillator to achieve higher frequency at lower power consumption. In the present invention, there is no high gain op amp or high speed comparator, which makes the resultant oscillator to be low power design and which can be integrated into a single chip with other system.
Abstract:
The invention provides a submersible, electrically-powered sensor assembly that incorporates a flexible seal assembly having operative and non-operative electrical traces of a uniform vertical height for carrying clamping loads and avoiding signal loss along a signal carrying trace due to compression of the flex seal, minimizing fluid leak paths between two flange surfaces, providing stability in compression, and enabling electrical communication in an environment having an operating fluid.
Abstract:
The invention provides a submersible, electrically-powered sensor assembly that incorporates a flexible seal assembly having operative and non-operative electrical traces of a uniform vertical height for carrying clamping loads and avoiding signal loss along a signal carrying trace due to compression of the flex seal, minimizing fluid leak paths between two flange surfaces, providing stability in compression, and enabling electrical communication in an environment having an operating fluid.
Abstract:
A sensor device and a method of forming comprises a die pad receives a sensor device, such as a MEMS device. The MEMS device has a first coefficient of thermal expansion (CTE). The die pad is made of a material having a second CTE compliant with the first CTE. The die pad includes a base and a support structure with a CTE compliant with the first and second CTE. The die pad has a support structure that protrudes from a base. The support structure has a height and wall thickness which minimize forces felt by the die pad and MEMS device when the base undergoes thermal expansion or contraction forces from a header.
Abstract:
The present invention disclosed provides for a rugged, compact sensing device for various implementations including those of automotive, marine, and other combustion technologies that require low cost accurate pressure sensing during internal combustion engine process. In one or more aspects of the present invention, a MEMS sensor connection with a flexible circuit is presented and the communication of which is preferably achieved through the use of wire bond technology.
Abstract:
A pressure sensor is descπbed with sensing elements electrically and physically isolated from a pressurized medium An absolute pressure sensor has a reference cavity, which can be at a vacuum or zero pressure, enclosing the sensing elements The reference cavity is formed by bonding a recessed cap wafer with a gauge wafer having a micromachined diaphragm Sensing elements are disposed on a first side ofthe diaphragm The pressurized medium accesses a second side of the diaphragm opposite to the first side where the sensing elements are disposed A spacer'wafer may be used for structural support and stress relief of the gauge wafer In one embodiment, vertical through-wafer conductive vias are used to bring out electrical connections from the sensing elements to outside the reference cavity In an alternative embodiment, peripheral bond pads on the gauge wafer are used to bring out electrical connections from the sensing elements to outside the reference cavity
Abstract:
A sensor device and a method of forming thereof comprises a die pad having an inner portion and an outer portion. The outer portion is made of steel, aluminum or other metal and is adapted to mount the die pad to a support structure having a first coefficient of thermal expansion (CTE) value and provide a hermetic seal therewith. The outer portion is made of a material having a CTE value substantially complaint with the first CTE value. The inner portion may be made of Invar, Kovar or ceramic material to receive a MEMS device having a second CTE value. The inner portion is made of a material having a CTE value substantially compliant with the second CTE value. The outer portion has a thickness less than that of the inner portion. The die pad may include a trench between outer edges of the outer and inner portions.
Abstract:
A low cost micro-electronic package for MEMS applications includes a package substrate, a MEMS device and a buffer insert which is placed between the MEMS device and the package substrate. The buffer insert has a coefficient of thermal expansion (CTE) which is compatible with the material of the MEMS device and is sufficiently rigid to isolate the MEMS device from thermal, mechanical and other physical stresses applied to the package substrate. In an embodiment, the package is formed as an integrated device which includes both the MEMS device and a signal conditioning integrated circuit, potentially found in the same die. The substrate insert may be made of a material having a CTE value compatible with silicon (Si), such as Kovar, Invar, or an appropriate ceramic material or the like.