Abstract:
A sensor includes a first substrate and a second substrate. The first substrate includes a first side and an opposing second side, with the first side having a recess. The recess is defined by one or more side walls and a bottom wall. One or more of the side walls are substantially perpendicular to the bottom wall. A sensing diaphragm is defined between the second side of the first substrate and the bottom wall of the recess. A boss extends from the bottom wall of the recess. The second substrate may include a first side and an opposing second side, where the first side has a recess. The first side of the first substrate may be secured to the first side of the second substrate such that the recess in the first substrate faces and is in fluid communication with the recess in the second substrate.
Abstract:
A pressure sensor includes a pressure sensing element and a top cap. The pressure sensing element includes a bonded wafer substrate having a buried sealed cavity. A wall of the buried sealed cavity forms a sensing diaphragm. One or more sense elements may be supported by the sensing diaphragm and one or more bond pads are supported by the upper side of the bonded wafer substrate. Each of the bond pads may be positioned adjacent to the sensing diaphragm and electrically connected to one or more of the sense elements. The top cap may be secured to the upper side of the bonded wafer substrate such that an aperture in the top cap facilitates passage of a media in a downward direction to the sensing diaphragm. The top cap may be configured to isolate the bond pads from the media.
Abstract:
Flow through pressure sensors for use in fluid chromatography systems include a planar device formed from diffusion bonding of a plurality of metallic sheets and at least one sensing element. The planar device has a top surface, a bottom surface and a flow through channel. A diaphragm formed from a portion of one of the top or bottom surfaces is located adjacent to a sensing region of the flow through channel and is attached to the sensing element. The diaphragm is sized to deflect a distance in response to fluid pressure in the sensing region, which has an internal volume of less than about 25 microliters. The diaphragm and attached sensing element form a pressure sensor that measures strain or deflection of the diaphragm to calculate a pressure within the sensing region.
Abstract:
Disclosed herein is a vertical pressure sensor. The vertical pressure sensor includes a pressure application unit having a diaphragm to which strain gauges are attached, a socket unit surrounding a circumference of the diaphragm of the pressure application unit, the socket unit having a through hole, first to fourth electrode terminals provided at the upper end of the socket unit in a Wheatstone bridge circuit pattern, one end of each of the electrode terminals exposed through the through hole being electrically connected to a corresponding one of the strain gauges by wire bonding, the other end of each of the electrode terminals protruding from the upper end of the socket unit to constitute an electrode tip, a circuit board connected to the first to fourth electrode terminals to convert a pressure value into an electrical signal, and electrode rods connected to the circuit board to transmit the electrical signal outside.
Abstract:
A pressure sensor is described with sensing elements electrically and physically isolated from a pressurized medium. An absolute pressure sensor has a reference cavity, which can be at a vacuum or zero pressure, enclosing the sensing elements. The reference cavity is formed by bonding a recessed cap wafer with a gauge wafer having a micromachined diaphragm. Sensing elements are disposed on a first side of the diaphragm. The pressurized medium accesses a second side of the diaphragm opposite to the first side where the sensing elements are disposed. A spacer wafer may be used for structural support and stress relief of the gauge wafer. In one embodiment, vertical through-wafer conductive vias are used to bring out electrical connections from the sensing elements to outside the reference cavity. In an alternative embodiment, peripheral bond pads on the gauge wafer are used to bring out electrical connections from the sensing elements to outside the reference cavity
Abstract:
Устройство для измерения механических величин, тензометрический преобразователь, содержащий металлический корпус в виде цилиндрического стакана с тонкостенным дном, на наружной поверхности которой сформированы тензорезисторы, компенсационные элементы для температурной компенсации и нормирования выходного сигнала, изоляционный слой, покрывающий указанные элементы на наружной поверхности дна стакана, а тензорезисторы из моносульфита самария закреплены на диэлектрическом слое из окиси алюминия или окиси кремния или двуокиси кремния, который закреплен на наружной поверхности дна стакана через адгезионный слой из хрома, при этом каждое плечо измерительного моста Уитстона выполнено из одного тензорезистора или группы тензорезисторов, соединенных последовательно или параллельно между собой, в зонах сжатия в кольцевой области перехода мембраны в стенку стакана и в зонах растяжения в области центральной части мембраны размещены дистантно по окружности одиночные тензорезисторы или объединенные в дистантно расположенные по окружности группы тензорезисторов, металлизированные площадки состоят из по крайней мере двух слоев, нижний из которых имеет минимальное переходное электрическое сопротивление, а верхний предназначен для пайки
Abstract:
The present invention relates to an electronic component, in particular a microelectromechanical system pressure sensor (7) or generally MEMS sensors which can be used for high pressures and high temperatures and extreme ambient conditions. The invention is distinguished by the fact that a particularly temperature-resistant semiconductor compound, to be precise silicon carbide (SiC), is used as the substrate. In this way, it is possible to detect high pressures and temperatures, in particular in turbines and compressors (10). In addition, an ultrasonic measured value transducer (9) is proposed for data transmission purposes.
Abstract:
Die Erfindung bezieht sich auf das Gebiet der Multilayerkeramik und betrifft keramische Drucksensoren, wie sie beispielsweise zur industriellen Prozesskontrolle zur Anwendung kommen können. Der Erfindung liegt die Aufgabe zugrunde, keramische Drucksensoren anzugeben, die weitgehend mechanisch spannungsfrei gelagert sind und eine hohe Lebensdauer aufweisen, und deren Herstellung effektiver und kostengünstiger ist. Gelöst wird die Aufgabe durch keramische Drucksensoren, bestehend aus einen Träger aus Folien, wobei die Folie(n) mindestens einen Hohlraum ausbilden, der mit mindestens einer keramischen Druckmembranfolie abgedeckt ist oder in dem sich den Hohlraum abdeckend eine keramische Druckmembranfolie befindet, und wobei die Folie(n) mindestens eine Zuleitung zur Druckanbindung an den Hohlraum aufweisen und der Folienverbund gesintert ist. Die Aufgabe wird weiterhin gelöst durch ein Verfahren zur Herstellung, bei dem mindestens eine Folie zur Herstellung eines Hohlraumes strukturiert, mindestens eine Druckmembranfolie zur Abdeckung auf den Hohlraum positioniert und nachfolgend der Folienverbund gesintert wird.