Abstract:
Various implantable medical device embodiments stimulate an autonomic neural target from within a pulmonary artery, and comprise at least one electrode, a power supply, a neural stimulator connected to the power supply, and an anchor structure. The neural stimulator is configured to generate a neural stimulation signal for delivery to the neural stimulation target through the at least one electrode. The anchor structure is configured to chronically and securely implant the neural stimulator, the power supply and the at least one electrode within the pulmonary artery. The anchor structure, the neural stimulator, the power supply and the at least one electrode are configured to be implanted through a pulmonary valve into the pulmonary artery. In various embodiments, the neural stimulator is configured to be operational to implement a neural stimulation protocol when chronically implanted within the pulmonary artery without a wired connection through the pulmonary valve.
Abstract:
A system comprises a patient device comprising: a communication module adapted to obtain results of a first physiological assessment, wherein the first physiological assessment includes a between-patient assessment; and an analysis module adapted to use the results to adjust one or more parameters of a second physiological assessment, wherein the second physiological assessment includes a within-patient assessment.
Abstract:
A method of and system for collecting patient event information from a cardiac rhythm management system (CRM system) is described, where the CRM system includes a cardiac rhythm management device (CRM device) and an external interface device. The method includes the steps of initiating a transmission session wherein the interface device communicates with the CRM device, prompting a user of the CRM system to select a reason for the transmission session, inputting the selected reason for the transmission session to the interface device, and storing the selected reason for the transmission session and timestamp information for the transmission session.
Abstract:
This document discusses, among other things, systems and methods for predicting heart failure decompensation using within-patient diagnostics. A system comprises a patient device comprising: a communication module adapted to detect an alert status of each of one or more sensors; an analysis module adapted to: calculate an alert score by combining the detected alerts; and calculate a composite alert score, the composite alert score being indicative of a physiological condition and comprising a combination of two or more alert scores.
Abstract:
Various implantable medical device embodiments stimulate an autonomic neural target from within a pulmonary artery, and comprise at least one electrode, a power supply, a neural stimulator connected to the power supply, and an anchor structure. The neural stimulator is configured to generate a neural stimulation signal for delivery to the neural stimulation target through the at least one electrode. The anchor structure is configured to chronically and securely implant the neural stimulator, the power supply and the at least one electrode within the pulmonary artery. The anchor structure, the neural stimulator, the power supply and the at least one electrode are configured to be implanted through a pulmonary valve into the pulmonary artery. In various embodiments, the neural stimulator is configured to be operational to implement a neural stimulation protocol when chronically implanted within the pulmonary artery without a wired connection through the pulmonary valve.
Abstract:
This document discusses, among other things, a system comprising a sensor signal processor configured to receive a plurality of electrical sensor signals produced by a plurality of sensors and at least one sensor signal produced by an implantable sensor, a memory that includes information indicating a co-morbidity of a subject, a sensor signal selection circuit that selects a sensor signal to monitor from among the plurality of sensor signals, according to an indicated co-morbidity, a threshold adjustment circuit that adjusts a detection threshold of the selected sensor signal according to the indicated co-morbidity, and a decision circuit that applies the adjusted detection threshold to the selected sensor signal to determine whether an event associated with worsening heart failure (HF) occurred in the subject and outputs an indication of whether the event associated with worsening HF occurred to a user or process.
Abstract:
Techniques for diagnosing lead fractures and lead connection problems are described. One or more medical leads may be coupled to an implantable medical device (IMD) to position electrodes or other sensors at different locations within a patient than the IMD. The IMD may include a lead diagnostic module configured to diagnose problems with a coupled lead and automatically select between a lead fracture problem and a lead connection problem based on the diagnosis. The diagnosis of either lead fracture problems or lead connection problems may be based on a timing of an increased impedance value with respect to connection of the lead to the IMD, a return to baseline impedance values after the increased impedance value, an abrupt rise of the increased impedance value, maximum impedance values, or oversensing. An external device may present the diagnosis to a user to facilitate appropriate corrective action.
Abstract:
A system and method sense a pressure signal in a pulmonary artery and compute a stroke volume and cardiac output. A pressure signal is received from an implantable pressure sensor disposed in a pulmonary artery. The pressure signal includes a systolic period and a diastolic period for determining a heart rate (HR) and a heart cycle. An iteratively-updating model can relate pressure signal and HR to a stroke volume (SV) and a cardiac output (CO). The model extracts a mean pulse pressure (MPP) from the PAP signal and receives a patient-specific vascular resistance model parameter and a patient-specific arterial compliance model parameter. CO can be calculated using the HR, the PAP signal, and the model. The vascular resistance model parameter and the arterial compliance model parameter are iteratively updated using the output of the model.
Abstract:
A system comprises a patient device comprising: a communication module adapted to receive patient data associated with a patient; a reference group module adapted to select and store reference group data corresponding to the patient; and an analysis module adapted to: generate a model of the reference group data; and compare the patient data to the model to calculate an index for the patient.